### Autogenerated by interfaces-wireless.py ###
{% if description %}
# Description: {{ description }}
# User-friendly description of device; up to 32 octets encoded in UTF-8
device_name={{ description | truncate(32, True) }}
{% endif %}

# AP netdevice name (without 'ap' postfix, i.e., wlan0 uses wlan0ap for
# management frames with the Host AP driver); wlan0 with many nl80211 drivers
# Note: This attribute can be overridden by the values supplied with the '-i'
# command line parameter.
interface={{ ifname }}

{% if is_bridge_member is defined %}
# In case of atheros and nl80211 driver interfaces, an additional
# configuration parameter, bridge, may be used to notify hostapd if the
# interface is included in a bridge. This parameter is not used with Host AP
# driver. If the bridge parameter is not set, the drivers will automatically
# figure out the bridge interface (assuming sysfs is enabled and mounted to
# /sys) and this parameter may not be needed.
#
# For nl80211, this parameter can be used to request the AP interface to be
# added to the bridge automatically (brctl may refuse to do this before hostapd
# has been started to change the interface mode). If needed, the bridge
# interface is also created.
bridge={{ is_bridge_member }}
{% endif %}

# Driver interface type (hostap/wired/none/nl80211/bsd);
# default: hostap). nl80211 is used with all Linux mac80211 drivers.
# Use driver=none if building hostapd as a standalone RADIUS server that does
# not control any wireless/wired driver.
driver=nl80211

# Levels (minimum value for logged events):
#  0 = verbose debugging
#  1 = debugging
#  2 = informational messages
#  3 = notification
#  4 = warning
logger_syslog=-1
logger_syslog_level=0
logger_stdout=-1
logger_stdout_level=0

{% if country_code %}
# Country code (ISO/IEC 3166-1). Used to set regulatory domain.
# Set as needed to indicate country in which device is operating.
# This can limit available channels and transmit power.
country_code={{ country_code }}

# Enable IEEE 802.11d. This advertises the country_code and the set of allowed
# channels and transmit power levels based on the regulatory limits. The
# country_code setting must be configured with the correct country for
# IEEE 802.11d functions.
ieee80211d=1
{% endif %}

{% if ssid %}
# SSID to be used in IEEE 802.11 management frames
ssid={{ ssid }}
{% endif %}

{% if channel %}
# Channel number (IEEE 802.11)
# (default: 0, i.e., not set)
# Please note that some drivers do not use this value from hostapd and the
# channel will need to be configured separately with iwconfig.
channel={{ channel }}
{% endif %}

{% if mode %}
# Operation mode (a = IEEE 802.11a (5 GHz), b = IEEE 802.11b (2.4 GHz),
# g = IEEE 802.11g (2.4 GHz), ad = IEEE 802.11ad (60 GHz); a/g options are used
# with IEEE 802.11n (HT), too, to specify band). For IEEE 802.11ac (VHT), this
# needs to be set to hw_mode=a. For IEEE 802.11ax (HE) on 6 GHz this needs
# to be set to hw_mode=a. When using ACS (see channel parameter), a
# special value "any" can be used to indicate that any support band can be used.
# This special case is currently supported only with drivers with which
# offloaded ACS is used.
{%   if 'n' in mode %}
hw_mode=g
{%   elif 'ac' in mode %}
hw_mode=a
ieee80211h=1
ieee80211ac=1
{%   else %}
hw_mode={{ mode }}
{%   endif %}
{% endif %}

# ieee80211w: Whether management frame protection (MFP) is enabled
# 0 = disabled (default)
# 1 = optional
# 2 = required
{% if 'disabled' in mgmt_frame_protection %}
ieee80211w=0
{% elif 'optional' in mgmt_frame_protection %}
ieee80211w=1
{% elif 'required' in mgmt_frame_protection %}
ieee80211w=2
{% endif %}

{% if capabilities is defined and capabilities.ht is defined %}
# ht_capab: HT capabilities (list of flags)
# LDPC coding capability: [LDPC] = supported
# Supported channel width set: [HT40-] = both 20 MHz and 40 MHz with secondary
#	channel below the primary channel; [HT40+] = both 20 MHz and 40 MHz
#	with secondary channel above the primary channel
#	(20 MHz only if neither is set)
#	Note: There are limits on which channels can be used with HT40- and
#	HT40+. Following table shows the channels that may be available for
#	HT40- and HT40+ use per IEEE 802.11n Annex J:
#	freq		HT40-		HT40+
#	2.4 GHz		5-13		1-7 (1-9 in Europe/Japan)
#	5 GHz		40,48,56,64	36,44,52,60
#	(depending on the location, not all of these channels may be available
#	for use)
#	Please note that 40 MHz channels may switch their primary and secondary
#	channels if needed or creation of 40 MHz channel maybe rejected based
#	on overlapping BSSes. These changes are done automatically when hostapd
#	is setting up the 40 MHz channel.
# Spatial Multiplexing (SM) Power Save: [SMPS-STATIC] or [SMPS-DYNAMIC]
#	(SMPS disabled if neither is set)
# HT-greenfield: [GF] (disabled if not set)
# Short GI for 20 MHz: [SHORT-GI-20] (disabled if not set)
# Short GI for 40 MHz: [SHORT-GI-40] (disabled if not set)
# Tx STBC: [TX-STBC] (disabled if not set)
# Rx STBC: [RX-STBC1] (one spatial stream), [RX-STBC12] (one or two spatial
#	streams), or [RX-STBC123] (one, two, or three spatial streams); Rx STBC
#	disabled if none of these set
# HT-delayed Block Ack: [DELAYED-BA] (disabled if not set)
# Maximum A-MSDU length: [MAX-AMSDU-7935] for 7935 octets (3839 octets if not
#	set)
# DSSS/CCK Mode in 40 MHz: [DSSS_CCK-40] = allowed (not allowed if not set)
# 40 MHz intolerant [40-INTOLERANT] (not advertised if not set)
# L-SIG TXOP protection support: [LSIG-TXOP-PROT] (disabled if not set)
{%   set output = namespace(value='')  %}

{%   if capabilities.ht.fourtymhz_incapable is defined %}
{%     set output.value = output.value + '[40-INTOLERANT]' %}
{%   endif %}
{%   if capabilities.ht.delayed_block_ack is defined %}
{%     set output.value = output.value + '[DELAYED-BA]' %}
{%   endif %}
{%   if capabilities.ht.dsss_cck_40 is defined %}
{%     set output.value = output.value + '[DSSS_CCK-40]' %}
{%   endif %}
{%   if capabilities.ht.greenfield is defined %}
{%     set output.value = output.value + '[GF]' %}
{%   endif %}
{%   if capabilities.ht.ldpc is defined %}
{%     set output.value = output.value + '[LDPC]' %}
{%   endif %}
{%   if capabilities.ht.lsig_protection is defined %}
{%     set output.value = output.value + '[LSIG-TXOP-PROT]' %}
{%   endif %}
{%   if capabilities.ht.stbc is defined and capabilities.ht.stbc.tx is defined %}
{%     set output.value = output.value + '[TX-STBC]' %}
{%   endif %}
{%   if capabilities.ht.stbc is defined and capabilities.ht.stbc.rx is defined %}
{%     set output.value = output.value + '[RX-STBC-' + capabilities.ht.stbc.rx | upper + ']' %}
{%   endif %}
{%   if capabilities.ht.max_amsdu is defined %}
{%     set output.value = output.value + '[MAX-AMSDU-' + capabilities.ht.max_amsdu + ']' %}
{%   endif %}
{%   if capabilities.ht.smps is defined %}
{%     set output.value = output.value + '[SMPS-' + capabilities.ht.smps | upper + ']' %}
{%   endif %}

{% if capabilities.ht.channel_set_width is defined %}
{%   for csw in capabilities.ht.channel_set_width %}
{%     set output.value = output.value + '[' + csw | upper + ']'  %}
{%   endfor %}
{% endif %}

{% if capabilities.ht.short_gi is defined %}
{%   for short_gi in capabilities.ht.short_gi %}
{%     set output.value = output.value + '[SHORT-GI-' + short_gi | upper + ']'  %}
{%   endfor %}
{% endif %}

ht_capab={{ output.value }}

{%   if capabilities.ht.auto_powersave is defined %}
# WMM-PS Unscheduled Automatic Power Save Delivery [U-APSD]
# Enable this flag if U-APSD supported outside hostapd (eg., Firmware/driver)
uapsd_advertisement_enabled=1
{%   endif %}
{% endif %}

# Required for full HT and VHT functionality
wme_enabled=1


{% if capabilities is defined and capabilities.require_ht is defined %}
# Require stations to support HT PHY (reject association if they do not)
require_ht=1
{% endif %}

{% if capabilities is defined and capabilities.vht is defined %}
# vht_capab: VHT capabilities (list of flags)
#
# vht_max_mpdu_len: [MAX-MPDU-7991] [MAX-MPDU-11454]
# Indicates maximum MPDU length
# 0 = 3895 octets (default)
# 1 = 7991 octets
# 2 = 11454 octets
# 3 = reserved
#
# supported_chan_width: [VHT160] [VHT160-80PLUS80]
# Indicates supported Channel widths
# 0 = 160 MHz & 80+80 channel widths are not supported (default)
# 1 = 160 MHz channel width is supported
# 2 = 160 MHz & 80+80 channel widths are supported
# 3 = reserved
#
# Rx LDPC coding capability: [RXLDPC]
# Indicates support for receiving LDPC coded pkts
# 0 = Not supported (default)
# 1 = Supported
#
# Short GI for 80 MHz: [SHORT-GI-80]
# Indicates short GI support for reception of packets transmitted with TXVECTOR
# params format equal to VHT and CBW = 80Mhz
# 0 = Not supported (default)
# 1 = Supported
#
# Short GI for 160 MHz: [SHORT-GI-160]
# Indicates short GI support for reception of packets transmitted with TXVECTOR
# params format equal to VHT and CBW = 160Mhz
# 0 = Not supported (default)
# 1 = Supported
#
# Tx STBC: [TX-STBC-2BY1]
# Indicates support for the transmission of at least 2x1 STBC
# 0 = Not supported (default)
# 1 = Supported
#
# Rx STBC: [RX-STBC-1] [RX-STBC-12] [RX-STBC-123] [RX-STBC-1234]
# Indicates support for the reception of PPDUs using STBC
# 0 = Not supported (default)
# 1 = support of one spatial stream
# 2 = support of one and two spatial streams
# 3 = support of one, two and three spatial streams
# 4 = support of one, two, three and four spatial streams
# 5,6,7 = reserved
#
# SU Beamformer Capable: [SU-BEAMFORMER]
# Indicates support for operation as a single user beamformer
# 0 = Not supported (default)
# 1 = Supported
#
# SU Beamformee Capable: [SU-BEAMFORMEE]
# Indicates support for operation as a single user beamformee
# 0 = Not supported (default)
# 1 = Supported
#
# Compressed Steering Number of Beamformer Antennas Supported:
# [BF-ANTENNA-2] [BF-ANTENNA-3] [BF-ANTENNA-4]
#   Beamformee's capability indicating the maximum number of beamformer
#   antennas the beamformee can support when sending compressed beamforming
#   feedback
# If SU beamformer capable, set to maximum value minus 1
# else reserved (default)
#
# Number of Sounding Dimensions:
# [SOUNDING-DIMENSION-2] [SOUNDING-DIMENSION-3] [SOUNDING-DIMENSION-4]
# Beamformer's capability indicating the maximum value of the NUM_STS parameter
# in the TXVECTOR of a VHT NDP
# If SU beamformer capable, set to maximum value minus 1
# else reserved (default)
#
# MU Beamformer Capable: [MU-BEAMFORMER]
# Indicates support for operation as an MU beamformer
# 0 = Not supported or sent by Non-AP STA (default)
# 1 = Supported
#
# VHT TXOP PS: [VHT-TXOP-PS]
# Indicates whether or not the AP supports VHT TXOP Power Save Mode
#  or whether or not the STA is in VHT TXOP Power Save mode
# 0 = VHT AP doesn't support VHT TXOP PS mode (OR) VHT STA not in VHT TXOP PS
#  mode
# 1 = VHT AP supports VHT TXOP PS mode (OR) VHT STA is in VHT TXOP power save
#  mode
#
# +HTC-VHT Capable: [HTC-VHT]
# Indicates whether or not the STA supports receiving a VHT variant HT Control
# field.
# 0 = Not supported (default)
# 1 = supported
#
# Maximum A-MPDU Length Exponent: [MAX-A-MPDU-LEN-EXP0]..[MAX-A-MPDU-LEN-EXP7]
# Indicates the maximum length of A-MPDU pre-EOF padding that the STA can recv
# This field is an integer in the range of 0 to 7.
# The length defined by this field is equal to
# 2 pow(13 + Maximum A-MPDU Length Exponent) -1 octets
#
# VHT Link Adaptation Capable: [VHT-LINK-ADAPT2] [VHT-LINK-ADAPT3]
# Indicates whether or not the STA supports link adaptation using VHT variant
# HT Control field
# If +HTC-VHTcapable is 1
#  0 = (no feedback) if the STA does not provide VHT MFB (default)
#  1 = reserved
#  2 = (Unsolicited) if the STA provides only unsolicited VHT MFB
#  3 = (Both) if the STA can provide VHT MFB in response to VHT MRQ and if the
#      STA provides unsolicited VHT MFB
# Reserved if +HTC-VHTcapable is 0
#
# Rx Antenna Pattern Consistency: [RX-ANTENNA-PATTERN]
# Indicates the possibility of Rx antenna pattern change
# 0 = Rx antenna pattern might change during the lifetime of an association
# 1 = Rx antenna pattern does not change during the lifetime of an association
#
# Tx Antenna Pattern Consistency: [TX-ANTENNA-PATTERN]
# Indicates the possibility of Tx antenna pattern change
# 0 = Tx antenna pattern might change during the lifetime of an association
# 1 = Tx antenna pattern does not change during the lifetime of an

{%   if capabilities.vht.center_channel_freq is defined and capabilities.vht.center_channel_freq.freq_1 is defined %}
# center freq = 5 GHz + (5 * index)
# So index 42 gives center freq 5.210 GHz
# which is channel 42 in 5G band
vht_oper_centr_freq_seg0_idx={{ capabilities.vht.center_channel_freq.freq_1 }}
{%   endif %}

{%   if capabilities.vht.center_channel_freq is defined and capabilities.vht.center_channel_freq.freq_2 is defined %}
# center freq = 5 GHz + (5 * index)
# So index 159 gives center freq 5.795 GHz
# which is channel 159 in 5G band
vht_oper_centr_freq_seg1_idx={{ capabilities.vht.center_channel_freq.freq_2 }}
{%   endif %}

{%   if capabilities.vht.channel_set_width is defined %}
vht_oper_chwidth={{ capabilities.vht.channel_set_width }}
{%   endif %}

{%   set output = namespace(value='')  %}
{%   if capabilities.vht.stbc is defined and capabilities.vht.stbc.tx is defined %}
{%     set output.value = output.value + '[TX-STBC-2BY1]' %}
{%   endif %}
{%   if capabilities.vht.stbc is defined and capabilities.vht.stbc.rx is defined %}
{%     set output.value = output.value + '[RX-STBC-' + capabilities.vht.stbc.rx + ']' %}
{%   endif %}
{%   if capabilities.vht.ldpc is defined %}
{%     set output.value = output.value + '[RXLDPC]' %}
{%   endif %}
{%   if capabilities.vht.tx_powersave is defined %}
{%     set output.value = output.value + '[VHT-TXOP-PS]' %}
{%   endif %}
{%   if capabilities.vht.vht_cf is defined %}
{%     set output.value = output.value + '[HTC-VHT]' %}
{%   endif %}
{%   if capabilities.vht.antenna_pattern_fixed is defined %}
{%     set output.value = output.value + '[RX-ANTENNA-PATTERN][TX-ANTENNA-PATTERN]' %}
{%   endif %}
{%   if capabilities.vht.max_mpdu is defined %}
{%     set output.value = output.value + '[MAX-MPDU-' + capabilities.vht.max_mpdu + ']' %}
{%   endif %}
{%   if capabilities.vht.max_mpdu_exp is defined %}
{%     set output.value = output.value + '[MAX-A-MPDU-LEN-EXP-' + capabilities.vht.max_mpdu_exp + ']' %}
{%   endif %}
{%   if capabilities.vht.max_mpdu_exp is defined and capabilities.vht.max_mpdu_exp == '2' %}
{%     set output.value = output.value + '[VHT160]' %}
{%   endif %}
{%   if capabilities.vht.max_mpdu_exp is defined and capabilities.vht.max_mpdu_exp == '3' %}
{%     set output.value = output.value + '[VHT160-80PLUS80]' %}
{%   endif %}
{%   if capabilities.vht.link_adaptation is defined and capabilities.vht.link_adaptation == 'unsolicited' %}
{%     set output.value = output.value + '[VHT-LINK-ADAPT2]' %}
{%   endif %}
{%   if capabilities.vht.link_adaptation is defined and capabilities.vht.link_adaptation == 'both' %}
{%     set output.value = output.value + '[VHT-LINK-ADAPT3]' %}
{%   endif %}

{%   for short_gi in capabilities.vht.short_gi if capabilities.vht.short_gi is defined %}
{%     set output.value = output.value + '[SHORT-GI-' + short_gi | upper + ']'  %}
{%   endfor %}

{%   for beamform in capabilities.vht.beamform if capabilities.vht.beamform is defined %}
{%     set output.value = output.value + '[SU-BEAMFORMER]' if beamform == 'single-user-beamformer' else '' %}
{%     set output.value = output.value + '[SU-BEAMFORMEE]' if beamform == 'single-user-beamformee' else '' %}
{%     set output.value = output.value + '[MU-BEAMFORMER]' if beamform == 'multi-user-beamformer'  else '' %}
{%     set output.value = output.value + '[MU-BEAMFORMEE]' if beamform == 'multi-user-beamformee'  else '' %}
{%   endfor %}

{%   if capabilities.vht.antenna_count is defined and capabilities.vht.antenna_count|int > 1  %}
{%     if capabilities.vht.beamform %}
{%       if beamform == 'single-user-beamformer' %}
{%         if capabilities.vht.antenna_count is defined and capabilities.vht.antenna_count|int > 1 and capabilities.vht.antenna_count|int < 6  %}
{%           set output.value = output.value + '[BF-ANTENNA-' + capabilities.vht.antenna_count|int -1 + ']' %}
{%           set output.value = output.value + '[SOUNDING-DIMENSION-' + capabilities.vht.antenna_count|int -1 + ']' %}
{%         endif %}
{%       endif %}
{%       if capabilities.vht.antenna_count is defined and capabilities.vht.antenna_count|int > 1 and capabilities.vht.antenna_count|int < 5  %}
{%         set output.value = output.value + '[BF-ANTENNA-' + capabilities.vht.antenna_count + ']' %}
{%         set output.value = output.value + '[SOUNDING-DIMENSION-' + capabilities.vht.antenna_count+ ']' %}
{%       endif %}
{%     endif %}
{%   endif %}

vht_capab={{ output.value }}
{% endif %}

# ieee80211n: Whether IEEE 802.11n (HT) is enabled
# 0 = disabled (default)
# 1 = enabled
# Note: You will also need to enable WMM for full HT functionality.
# Note: hw_mode=g (2.4 GHz) and hw_mode=a (5 GHz) is used to specify the band.
{% if capabilities is defined and capabilities.require_vht is defined %}
ieee80211n=0
# Require stations to support VHT PHY (reject association if they do not)
require_vht=1
{% else %}
{%   if 'n' in mode or 'ac' in mode %}
ieee80211n=1
{%   else %}
ieee80211n=0
{%   endif %}
{% endif %}

{% if disable_broadcast_ssid is defined %}
# Send empty SSID in beacons and ignore probe request frames that do not
# specify full SSID, i.e., require stations to know SSID.
# default: disabled (0)
# 1 = send empty (length=0) SSID in beacon and ignore probe request for
#     broadcast SSID
# 2 = clear SSID (ASCII 0), but keep the original length (this may be required
#     with some clients that do not support empty SSID) and ignore probe
#     requests for broadcast SSID
ignore_broadcast_ssid=1
{% endif %}

# Station MAC address -based authentication
# Please note that this kind of access control requires a driver that uses
# hostapd to take care of management frame processing and as such, this can be
# used with driver=hostap or driver=nl80211, but not with driver=atheros.
# 0 = accept unless in deny list
# 1 = deny unless in accept list
# 2 = use external RADIUS server (accept/deny lists are searched first)
macaddr_acl=0

{% if max_stations is defined %}
# Maximum number of stations allowed in station table. New stations will be
# rejected after the station table is full. IEEE 802.11 has a limit of 2007
# different association IDs, so this number should not be larger than that.
# (default: 2007)
max_num_sta={{ max_stations }}
{% endif %}

{% if wds is defined %}
# WDS (4-address frame) mode with per-station virtual interfaces
# (only supported with driver=nl80211)
# This mode allows associated stations to use 4-address frames to allow layer 2
# bridging to be used.
wds_sta=1
{% endif %}

{% if isolate_stations is defined %}
# Client isolation can be used to prevent low-level bridging of frames between
# associated stations in the BSS. By default, this bridging is allowed.
ap_isolate=1
{% endif %}

{% if reduce_transmit_power is defined %}
# Add Power Constraint element to Beacon and Probe Response frames
# This config option adds Power Constraint element when applicable and Country
# element is added. Power Constraint element is required by Transmit Power
# Control. This can be used only with ieee80211d=1.
# Valid values are 0..255.
local_pwr_constraint={{ reduce_transmit_power }}
{% endif %}

{% if expunge_failing_stations is defined %}
# Disassociate stations based on excessive transmission failures or other
# indications of connection loss. This depends on the driver capabilities and
# may not be available with all drivers.
disassoc_low_ack=1
{% endif %}


{% if security is defined and security.wep is defined %}
# IEEE 802.11 specifies two authentication algorithms. hostapd can be
# configured to allow both of these or only one. Open system authentication
# should be used with IEEE 802.1X.
# Bit fields of allowed authentication algorithms:
# bit 0 = Open System Authentication
# bit 1 = Shared Key Authentication (requires WEP)
auth_algs=2

# WEP rekeying (disabled if key lengths are not set or are set to 0)
# Key lengths for default/broadcast and individual/unicast keys:
# 5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits)
# 13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits)
wep_key_len_broadcast=5
wep_key_len_unicast=5

# Static WEP key configuration
#
# The key number to use when transmitting.
# It must be between 0 and 3, and the corresponding key must be set.
# default: not set
wep_default_key=0

# The WEP keys to use.
# A key may be a quoted string or unquoted hexadecimal digits.
# The key length should be 5, 13, or 16 characters, or 10, 26, or 32
# digits, depending on whether 40-bit (64-bit), 104-bit (128-bit), or
# 128-bit (152-bit) WEP is used.
# Only the default key must be supplied; the others are optional.
{%   if security.wep.key is defined %}
{%     for key in sec_wep_key %}
wep_key{{ loop.index -1 }}={{ security.wep.key }}
{%     endfor %}
{%   endif %}


{% elif security is defined and security.wpa is defined %}
##### WPA/IEEE 802.11i configuration ##########################################

# Enable WPA. Setting this variable configures the AP to require WPA (either
# WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either
# wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK.
# Instead of wpa_psk / wpa_passphrase, wpa_psk_radius might suffice.
# For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys),
# RADIUS authentication server must be configured, and WPA-EAP must be included
# in wpa_key_mgmt.
# This field is a bit field that can be used to enable WPA (IEEE 802.11i/D3.0)
# and/or WPA2 (full IEEE 802.11i/RSN):
# bit0 = WPA
# bit1 = IEEE 802.11i/RSN (WPA2) (dot11RSNAEnabled)
{%   if security.wpa.mode is defined %}
{%     if security.wpa.mode == 'both' %}
wpa=3
{%     elif security.wpa.mode == 'wpa2' %}
wpa=2
{%     elif security.wpa.mode == 'wpa' %}
wpa=1
{%     endif %}
{%   endif %}

{%   if security.wpa.cipher is defined %}
# Set of accepted cipher suites (encryption algorithms) for pairwise keys
# (unicast packets). This is a space separated list of algorithms:
# CCMP = AES in Counter mode with CBC-MAC (CCMP-128)
# TKIP = Temporal Key Integrity Protocol
# CCMP-256 = AES in Counter mode with CBC-MAC with 256-bit key
# GCMP = Galois/counter mode protocol (GCMP-128)
# GCMP-256 = Galois/counter mode protocol with 256-bit key
# Group cipher suite (encryption algorithm for broadcast and multicast frames)
# is automatically selected based on this configuration. If only CCMP is
# allowed as the pairwise cipher, group cipher will also be CCMP. Otherwise,
# TKIP will be used as the group cipher. The optional group_cipher parameter can
# be used to override this automatic selection.

{%     if security.wpa.mode is defined and security.wpa.mode == 'wpa2' %}
# Pairwise cipher for RSN/WPA2 (default: use wpa_pairwise value)
rsn_pairwise={{ security.wpa.cipher | join(" ") }}
{%     else %}
# Pairwise cipher for WPA (v1) (default: TKIP)
wpa_pairwise={{ security.wpa.cipher | join(" ") }}
{%     endif %}
{%   endif %}

{%   if security.wpa.group_cipher is defined %}
# Optional override for automatic group cipher selection
# This can be used to select a specific group cipher regardless of which
# pairwise ciphers were enabled for WPA and RSN. It should be noted that
# overriding the group cipher with an unexpected value can result in
# interoperability issues and in general, this parameter is mainly used for
# testing purposes.
group_cipher={{ security.wpa.group_cipher | join(" ") }}
{%   endif %}

{%   if security.wpa.passphrase is defined %}
# IEEE 802.11 specifies two authentication algorithms. hostapd can be
# configured to allow both of these or only one. Open system authentication
# should be used with IEEE 802.1X.
# Bit fields of allowed authentication algorithms:
# bit 0 = Open System Authentication
# bit 1 = Shared Key Authentication (requires WEP)
auth_algs=1

# WPA pre-shared keys for WPA-PSK. This can be either entered as a 256-bit
# secret in hex format (64 hex digits), wpa_psk, or as an ASCII passphrase
# (8..63 characters) that will be converted to PSK. This conversion uses SSID
# so the PSK changes when ASCII passphrase is used and the SSID is changed.
wpa_passphrase={{ security.wpa.passphrase }}

# Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
# entries are separated with a space. WPA-PSK-SHA256 and WPA-EAP-SHA256 can be
# added to enable SHA256-based stronger algorithms.
# WPA-PSK = WPA-Personal / WPA2-Personal
# WPA-PSK-SHA256 = WPA2-Personal using SHA256
wpa_key_mgmt=WPA-PSK

{%   elif security.wpa.radius is defined %}
##### IEEE 802.1X-2004 related configuration ##################################
# Require IEEE 802.1X authorization
ieee8021x=1

# Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
# entries are separated with a space. WPA-PSK-SHA256 and WPA-EAP-SHA256 can be
# added to enable SHA256-based stronger algorithms.
# WPA-EAP = WPA-Enterprise / WPA2-Enterprise
# WPA-EAP-SHA256 = WPA2-Enterprise using SHA256
wpa_key_mgmt=WPA-EAP

{%     if security.wpa.radius.server is defined %}
# RADIUS client forced local IP address for the access point
# Normally the local IP address is determined automatically based on configured
# IP addresses, but this field can be used to force a specific address to be
# used, e.g., when the device has multiple IP addresses.
# The own IP address of the access point (used as NAS-IP-Address)
{%       if security.wpa.radius.source_address is defined %}
radius_client_addr={{ security.wpa.radius.source_address }}
own_ip_addr={{ security.wpa.radius.source_address }}
{%       else %}
own_ip_addr=127.0.0.1
{%       endif %}

{%       for radius in security.wpa.radius.server if not radius.disabled %}
# RADIUS authentication server
auth_server_addr={{ radius.server }}
auth_server_port={{ radius.port }}
auth_server_shared_secret={{ radius.key }}

{%         if radius.acc_port %}
# RADIUS accounting server
acct_server_addr={{ radius.server }}
acct_server_port={{ radius.acc_port }}
acct_server_shared_secret={{ radius.key }}
{%         endif %}
{%       endfor %}
{%     else %}
# Open system
auth_algs=1
{%     endif %}
{%   endif %}
{% endif %}

# TX queue parameters (EDCF / bursting)
# tx_queue_<queue name>_<param>
# queues: data0, data1, data2, data3
#		(data0 is the highest priority queue)
# parameters:
#   aifs: AIFS (default 2)
#   cwmin: cwMin (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191,
#	   16383, 32767)
#   cwmax: cwMax (same values as cwMin, cwMax >= cwMin)
#   burst: maximum length (in milliseconds with precision of up to 0.1 ms) for
#          bursting
#
# Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
# These parameters are used by the access point when transmitting frames
# to the clients.
#
# Low priority / AC_BK = background
tx_queue_data3_aifs=7
tx_queue_data3_cwmin=15
tx_queue_data3_cwmax=1023
tx_queue_data3_burst=0
# Note: for IEEE 802.11b mode: cWmin=31 cWmax=1023 burst=0
#
# Normal priority / AC_BE = best effort
tx_queue_data2_aifs=3
tx_queue_data2_cwmin=15
tx_queue_data2_cwmax=63
tx_queue_data2_burst=0
# Note: for IEEE 802.11b mode: cWmin=31 cWmax=127 burst=0
#
# High priority / AC_VI = video
tx_queue_data1_aifs=1
tx_queue_data1_cwmin=7
tx_queue_data1_cwmax=15
tx_queue_data1_burst=3.0
# Note: for IEEE 802.11b mode: cWmin=15 cWmax=31 burst=6.0
#
# Highest priority / AC_VO = voice
tx_queue_data0_aifs=1
tx_queue_data0_cwmin=3
tx_queue_data0_cwmax=7
tx_queue_data0_burst=1.5

# Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
# for 802.11a or 802.11g networks
# These parameters are sent to WMM clients when they associate.
# The parameters will be used by WMM clients for frames transmitted to the
# access point.
#
# note - txop_limit is in units of 32microseconds
# note - acm is admission control mandatory flag. 0 = admission control not
# required, 1 = mandatory
# note - Here cwMin and cmMax are in exponent form. The actual cw value used
# will be (2^n)-1 where n is the value given here. The allowed range for these
# wmm_ac_??_{cwmin,cwmax} is 0..15 with cwmax >= cwmin.
#
wmm_enabled=1

# Low priority / AC_BK = background
wmm_ac_bk_cwmin=4
wmm_ac_bk_cwmax=10
wmm_ac_bk_aifs=7
wmm_ac_bk_txop_limit=0
wmm_ac_bk_acm=0
# Note: for IEEE 802.11b mode: cWmin=5 cWmax=10
#
# Normal priority / AC_BE = best effort
wmm_ac_be_aifs=3
wmm_ac_be_cwmin=4
wmm_ac_be_cwmax=10
wmm_ac_be_txop_limit=0
wmm_ac_be_acm=0
# Note: for IEEE 802.11b mode: cWmin=5 cWmax=7
#
# High priority / AC_VI = video
wmm_ac_vi_aifs=2
wmm_ac_vi_cwmin=3
wmm_ac_vi_cwmax=4
wmm_ac_vi_txop_limit=94
wmm_ac_vi_acm=0
# Note: for IEEE 802.11b mode: cWmin=4 cWmax=5 txop_limit=188
#
# Highest priority / AC_VO = voice
wmm_ac_vo_aifs=2
wmm_ac_vo_cwmin=2
wmm_ac_vo_cwmax=3
wmm_ac_vo_txop_limit=47
wmm_ac_vo_acm=0