1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
:lastproofread: 2021-07-07
.. _vrf:
###
VRF
###
:abbr:`VRF (Virtual Routing and Forwarding)` devices combined with ip rules
provides the ability to create virtual routing and forwarding domains (aka
VRFs, VRF-lite to be specific) in the Linux network stack. One use case is the
multi-tenancy problem where each tenant has their own unique routing tables and
in the very least need different default gateways.
Configuration
=============
A VRF device is created with an associated route table. Network interfaces are
then enslaved to a VRF device.
.. cfgcmd:: set vrf name <name>
Create new VRF instance with `<name>`. The name is used when placing
individual interfaces into the VRF.
.. cfgcmd:: set vrf name <name> table <id>
Configured routing table `<id>` is used by VRF `<name>`.
.. note:: A routing table ID can not be modified once it is assigned. It can
only be changed by deleting and re-adding the VRF instance.
.. cfgcmd:: set vrf bind-to-all
By default the scope of the port bindings for unbound sockets is limited to
the default VRF. That is, it will not be matched by packets arriving on
interfaces enslaved to a VRF and processes may bind to the same port if
they bind to a VRF.
TCP & UDP services running in the default VRF context (ie., not bound to any
VRF device) can work across all VRF domains by enabling this option.
Zebra/Kernel route filtering
----------------------------
Zebra supports prefix-lists and Route Mapss to match routes received from
other FRR components. The permit/deny facilities provided by these commands
can be used to filter which routes zebra will install in the kernel.
.. cfgcmd:: set vrf <name> ip protocol <protocol> route-map <route-map>
Apply a route-map filter to routes for the specified protocol.
The following protocols can be used: any, babel, bgp, connected, eigrp,
isis, kernel, ospf, rip, static, table
.. note:: If you choose any as the option that will cause all protocols that
are sending routes to zebra.
.. cfgcmd:: set vrf <name> ipv6 protocol <protocol> route-map <route-map>
Apply a route-map filter to routes for the specified protocol.
The following protocols can be used: any, babel, bgp, connected, isis,
kernel, ospfv3, ripng, static, table
.. note:: If you choose any as the option that will cause all protocols that
are sending routes to zebra.
Interfaces
----------
When VRFs are used it is not only mandatory to create a VRF but also the VRF
itself needs to be assigned to an interface.
.. cfgcmd:: set interfaces <dummy | ethernet | bonding | bridge | pppoe>
<interface> vrf <name>
Assign interface identified by `<interface>` to VRF named `<name>`.
Routing
-------
.. note:: VyOS 1.4 (sagitta) introduced dynamic routing support for VRFs.
Currently dynamic routing is supported for the following protocols:
- :ref:`routing-bgp`
- :ref:`routing-isis`
- :ref:`routing-ospf`
- :ref:`routing-ospfv3`
- :ref:`routing-static`
The CLI configuration is same as mentioned in above articles. The only
difference is, that each routing protocol used, must be prefixed with the `vrf
name <name>` command.
Example
^^^^^^^
The following commands would be required to set options for a given dynamic
routing protocol inside a given vrf:
- :ref:`routing-bgp`: ``set vrf name <name> protocols bgp ...``
- :ref:`routing-isis`: ``set vrf name <name> protocols isis ...``
- :ref:`routing-ospf`: ``set vrf name <name> protocols ospf ...``
- :ref:`routing-ospfv3`: ``set vrf name <name> protocols ospfv3 ...``
- :ref:`routing-static`: ``set vrf name <name> protocols static ...``
Operation
=========
It is not sufficient to only configure a VRF but VRFs must be maintained, too.
For VRF maintenance the following operational commands are in place.
.. opcmd:: show vrf
Lists VRFs that have been created
.. code-block:: none
vyos@vyos:~$ show vrf
VRF name state mac address flags interfaces
-------- ----- ----------- ----- ----------
blue up 00:53:12:d8:74:24 noarp,master,up,lower_up dum200,eth0.302
red up 00:53:de:02:df:aa noarp,master,up,lower_up dum100,eth0.300,bond0.100,peth0
.. note:: Command should probably be extended to list also the real
interfaces assigned to this one VRF to get a better overview.
.. opcmd:: show vrf <name>
.. code-block:: none
vyos@vyos:~$ show vrf name blue
VRF name state mac address flags interfaces
-------- ----- ----------- ----- ----------
blue up 00:53:12:d8:74:24 noarp,master,up,lower_up dum200,eth0.302
.. opcmd:: show ip route vrf <name>
Display IPv4 routing table for VRF identified by `<name>`.
.. code-block:: none
vyos@vyos:~$ show ip route vrf blue
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF blue:
K 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:00:50
S>* 172.16.0.0/16 [1/0] via 192.0.2.1, dum1, 00:00:02
C>* 192.0.2.0/24 is directly connected, dum1, 00:00:06
.. opcmd:: show ipv6 route vrf <name>
Display IPv6 routing table for VRF identified by `<name>`.
.. code-block:: none
vyos@vyos:~$ show ipv6 route vrf red
Codes: K - kernel route, C - connected, S - static, R - RIPng,
O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR,
f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF red:
K ::/0 [255/8192] unreachable (ICMP unreachable), 00:43:20
C>* 2001:db8::/64 is directly connected, dum1, 00:02:19
C>* fe80::/64 is directly connected, dum1, 00:43:19
K>* ff00::/8 [0/256] is directly connected, dum1, 00:43:19
.. opcmd:: ping <host> vrf <name>
The ping command is used to test whether a network host is reachable or not.
Ping uses ICMP protocol's mandatory ECHO_REQUEST datagram to elicit an
ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams (pings)
will have an IP and ICMP header, followed by "struct timeval" and an
arbitrary number of pad bytes used to fill out the packet.
When doing fault isolation with ping, you should first run it on the local
host, to verify that the local network interface is up and running. Then,
continue with hosts and gateways further down the road towards your
destination. Round-trip time and packet loss statistics are computed.
Duplicate packets are not included in the packet loss calculation, although
the round-trip time of these packets is used in calculating the minimum/
average/maximum round-trip time numbers.
Ping command can be interrupted at any given time using `<Ctrl>+c`- A brief
statistic is shown afterwards.
.. code-block:: none
vyos@vyos:~$ ping 192.0.2.1 vrf red
PING 192.0.2.1 (192.0.2.1) 56(84) bytes of data.
64 bytes from 192.0.2.1: icmp_seq=1 ttl=64 time=0.070 ms
64 bytes from 192.0.2.1: icmp_seq=2 ttl=64 time=0.078 ms
^C
--- 192.0.2.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 0.070/0.074/0.078/0.004 ms
.. opcmd:: traceroute vrf <name> [ipv4 | ipv6] <host>
Displays the route packets taken to a network host utilizing VRF instance
identified by `<name>`. When using the IPv4 or IPv6 option, displays the
route packets taken to the given hosts IP address family. This option is
useful when the host is specified as a hostname rather than an IP address.
.. _vrf example:
Example
=======
VRF route leaking
-----------------
The following example topology was built using EVE-NG.
.. figure:: /_static/images/vrf-example-topology-01.png
:alt: VRF topology example
VRF route leaking
* PC1 is in the ``default`` VRF and acting as e.g. a "fileserver"
* PC2 is in VRF ``blue`` which is the development department
* PC3 and PC4 are connected to a bridge device on router ``R1`` which is in VRF
``red``. Say this is the HR department.
* R1 is managed through an out-of-band network that resides in VRF ``mgmt``
.. _vrf example configuration:
Configuration
^^^^^^^^^^^^^
.. code-block:: none
set interfaces bridge br10 address '10.30.0.254/24'
set interfaces bridge br10 member interface eth3
set interfaces bridge br10 member interface eth4
set interfaces bridge br10 vrf 'red'
set interfaces ethernet eth0 address 'dhcp'
set interfaces ethernet eth0 vrf 'mgmt'
set interfaces ethernet eth1 address '10.0.0.254/24'
set interfaces ethernet eth2 address '10.20.0.254/24'
set interfaces ethernet eth2 vrf 'blue'
set protocols static route 10.20.0.0/24 interface eth2 vrf 'blue'
set protocols static route 10.30.0.0/24 interface br10 vrf 'red'
set service ssh disable-host-validation
set service ssh vrf 'mgmt'
set system name-server 'eth0'
set vrf name blue protocols static route 10.0.0.0/24 interface eth1 vrf 'default'
set vrf name blue table '3000'
set vrf name mgmt table '1000'
set vrf name red protocols static route 10.0.0.0/24 interface eth1 vrf 'default'
set vrf name red table '2000'
.. _vrf example operation:
Operation
^^^^^^^^^
After committing the configuration we can verify all leaked routes are
installed, and try to ICMP ping PC1 from PC3.
.. code-block:: none
PCS> ping 10.0.0.1
84 bytes from 10.0.0.1 icmp_seq=1 ttl=63 time=1.943 ms
84 bytes from 10.0.0.1 icmp_seq=2 ttl=63 time=1.618 ms
84 bytes from 10.0.0.1 icmp_seq=3 ttl=63 time=1.745 ms
.. code-block:: none
VPCS> show ip
NAME : VPCS[1]
IP/MASK : 10.30.0.1/24
GATEWAY : 10.30.0.254
DNS :
MAC : 00:50:79:66:68:0f
VRF default routing table
"""""""""""""""""""""""""
.. code-block:: none
vyos@R1:~$ show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
C>* 10.0.0.0/24 is directly connected, eth1, 00:07:44
S>* 10.20.0.0/24 [1/0] is directly connected, eth2 (vrf blue), weight 1, 00:07:38
S>* 10.30.0.0/24 [1/0] is directly connected, br10 (vrf red), weight 1, 00:07:38
VRF red routing table
"""""""""""""""""""""
.. code-block:: none
vyos@R1:~$ show ip route vrf red
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
VRF red:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:07:57
S>* 10.0.0.0/24 [1/0] is directly connected, eth1 (vrf default), weight 1, 00:07:40
C>* 10.30.0.0/24 is directly connected, br10, 00:07:54
VRF blue routing table
""""""""""""""""""""""
.. code-block:: none
vyos@R1:~$ show ip route vrf blue
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
VRF blue:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:08:00
S>* 10.0.0.0/24 [1/0] is directly connected, eth1 (vrf default), weight 1, 00:07:44
C>* 10.20.0.0/24 is directly connected, eth2, 00:07:53
##########
L3VPN VRFs
##########
:abbr:`L3VPN VRFs ( Layer 3 Virtual Private Networks )` bgpd supports for
IPv4 RFC 4364 and IPv6 RFC 4659. L3VPN routes, and their associated VRF
MPLS labels, can be distributed to VPN SAFI neighbors in the default, i.e.,
non VRF, BGP instance. VRF MPLS labels are reached using core MPLS labels
which are distributed using LDP or BGP labeled unicast.
bgpd also supports inter-VRF route leaking.
.. _l3vpn-vrf-route-leaking:
VRF Route Leaking
=================
BGP routes may be leaked (i.e. copied) between a unicast VRF RIB and the VPN
SAFI RIB of the default VRF for use in MPLS-based L3VPNs. Unicast routes may
also be leaked between any VRFs (including the unicast RIB of the default BGP
instance). A shortcut syntax is also available for specifying leaking from
one VRF to another VRF using the default instance’s VPN RIB as the intemediary
. A common application of the VRF-VRF feature is to connect a customer’s
private routing domain to a provider’s VPN service. Leaking is configured from
the point of view of an individual VRF: import refers to routes leaked from VPN
to a unicast VRF, whereas export refers to routes leaked from a unicast VRF to
VPN.
.. note:: Routes exported from a unicast VRF to the VPN RIB must be augmented
by two parameters:
an RD / RTLIST
Configuration for these exported routes must, at a minimum, specify
these two parameters.
.. _l3vpn-vrf example configuration:
Configuration
=============
Configuration of route leaking between a unicast VRF RIB and the VPN SAFI RIB
of the default VRF is accomplished via commands in the context of a VRF
address-family.
.. cfgcmd:: set vrf name <name> protocols bgp address-family
<ipv4-unicast|ipv6-unicast> rd vpn export <asn:nn|address:nn>
Specifies the route distinguisher to be added to a route exported from the
current unicast VRF to VPN.
.. cfgcmd:: set vrf name <name> protocols bgp address-family
<ipv4-unicast|ipv6-unicast> route-target vpn <import|export|both>
[RTLIST]
Specifies the route-target list to be attached to a route (export) or the
route-target list to match against (import) when exporting/importing
between the current unicast VRF and VPN.The RTLIST is a space-separated
list of route-targets, which are BGP extended community values as
described in Extended Communities Attribute.
.. cfgcmd:: set vrf name <name> protocols bgp address-family
<ipv4-unicast|ipv6-unicast> label vpn export <0-1048575|auto>
Enables an MPLS label to be attached to a route exported from the current
unicast VRF to VPN. If the value specified is auto, the label value is
automatically assigned from a pool maintained.
.. cfgcmd:: set vrf name <name> protocols bgp address-family
<ipv4-unicast|ipv6-unicast> route-map vpn <import|export>
[route-map <name>]
Specifies an optional route-map to be applied to routes imported or
exported between the current unicast VRF and VPN.
.. cfgcmd:: set vrf name <name> protocols bgp address-family
<ipv4-unicast|ipv6-unicast> <import|export> vpn
Enables import or export of routes between the current unicast VRF and VPN.
.. cfgcmd:: set vrf name <name> protocols bgp address-family
<ipv4-unicast|ipv6-unicast> import vrf <name>
Shortcut syntax for specifying automatic leaking from vrf VRFNAME to the
current VRF using the VPN RIB as intermediary. The RD and RT are auto
derived and should not be specified explicitly for either the source or
destination VRF’s.
.. _l3vpn-vrf example operation:
Operation
=========
It is not sufficient to only configure a L3VPN VRFs but L3VPN VRFs must be
maintained, too.For L3VPN VRF maintenance the following operational commands
are in place.
.. opcmd:: show bgp <ipv4|ipv6> vpn
Print active IPV4 or IPV6 routes advertised via the VPN SAFI.
.. code-block:: none
BGP table version is 2, local router ID is 10.0.1.1, vrf id 0
Default local pref 100, local AS 65001
Status codes: s suppressed, d damped, h history, * valid, > best, = multipath,
i internal, r RIB-failure, S Stale, R Removed
Nexthop codes: @NNN nexthop's vrf id, < announce-nh-self
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 10.50.50.1:1011
*>i10.50.50.0/24 10.0.0.7 0 100 0 i
UN=10.0.0.7 EC{65035:1011} label=80 type=bgp, subtype=0
Route Distinguisher: 10.60.60.1:1011
*>i10.60.60.0/24 10.0.0.10 0 100 0 i
UN=10.0.0.10 EC{65035:1011} label=80 type=bgp, subtype=0
.. opcmd:: show bgp <ipv4|ipv6> vpn summary
Print a summary of neighbor connections for the specified AFI/SAFI
combination.
.. code-block:: none
BGP router identifier 10.0.1.1, local AS number 65001 vrf-id 0
BGP table version 0
RIB entries 9, using 1728 bytes of memory
Peers 4, using 85 KiB of memory
Peer groups 1, using 64 bytes of memory
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt
10.0.0.7 4 65001 2860 2870 0 0 0 1d23h34m 2 10
.. include:: /_include/common-references.txt
|