diff options
Diffstat (limited to 'Cryptlib/OpenSSL/crypto/modes/ocb128.c')
-rw-r--r-- | Cryptlib/OpenSSL/crypto/modes/ocb128.c | 568 |
1 files changed, 0 insertions, 568 deletions
diff --git a/Cryptlib/OpenSSL/crypto/modes/ocb128.c b/Cryptlib/OpenSSL/crypto/modes/ocb128.c deleted file mode 100644 index c3bd13bb..00000000 --- a/Cryptlib/OpenSSL/crypto/modes/ocb128.c +++ /dev/null @@ -1,568 +0,0 @@ -/* - * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. - * - * Licensed under the OpenSSL license (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -#include <string.h> -#include <openssl/crypto.h> -#include "modes_lcl.h" - -#ifndef OPENSSL_NO_OCB - -/* - * Calculate the number of binary trailing zero's in any given number - */ -static u32 ocb_ntz(u64 n) -{ - u32 cnt = 0; - - /* - * We do a right-to-left simple sequential search. This is surprisingly - * efficient as the distribution of trailing zeros is not uniform, - * e.g. the number of possible inputs with no trailing zeros is equal to - * the number with 1 or more; the number with exactly 1 is equal to the - * number with 2 or more, etc. Checking the last two bits covers 75% of - * all numbers. Checking the last three covers 87.5% - */ - while (!(n & 1)) { - n >>= 1; - cnt++; - } - return cnt; -} - -/* - * Shift a block of 16 bytes left by shift bits - */ -static void ocb_block_lshift(const unsigned char *in, size_t shift, - unsigned char *out) -{ - unsigned char shift_mask; - int i; - unsigned char mask[15]; - - shift_mask = 0xff; - shift_mask <<= (8 - shift); - for (i = 15; i >= 0; i--) { - if (i > 0) { - mask[i - 1] = in[i] & shift_mask; - mask[i - 1] >>= 8 - shift; - } - out[i] = in[i] << shift; - - if (i != 15) { - out[i] ^= mask[i]; - } - } -} - -/* - * Perform a "double" operation as per OCB spec - */ -static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) -{ - unsigned char mask; - - /* - * Calculate the mask based on the most significant bit. There are more - * efficient ways to do this - but this way is constant time - */ - mask = in->c[0] & 0x80; - mask >>= 7; - mask *= 135; - - ocb_block_lshift(in->c, 1, out->c); - - out->c[15] ^= mask; -} - -/* - * Perform an xor on in1 and in2 - each of len bytes. Store result in out - */ -static void ocb_block_xor(const unsigned char *in1, - const unsigned char *in2, size_t len, - unsigned char *out) -{ - size_t i; - for (i = 0; i < len; i++) { - out[i] = in1[i] ^ in2[i]; - } -} - -/* - * Lookup L_index in our lookup table. If we haven't already got it we need to - * calculate it - */ -static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) -{ - size_t l_index = ctx->l_index; - - if (idx <= l_index) { - return ctx->l + idx; - } - - /* We don't have it - so calculate it */ - if (idx >= ctx->max_l_index) { - void *tmp_ptr; - /* - * Each additional entry allows to process almost double as - * much data, so that in linear world the table will need to - * be expanded with smaller and smaller increments. Originally - * it was doubling in size, which was a waste. Growing it - * linearly is not formally optimal, but is simpler to implement. - * We grow table by minimally required 4*n that would accommodate - * the index. - */ - ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; - tmp_ptr = - OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); - if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ - return NULL; - ctx->l = tmp_ptr; - } - while (l_index < idx) { - ocb_double(ctx->l + l_index, ctx->l + l_index + 1); - l_index++; - } - ctx->l_index = l_index; - - return ctx->l + idx; -} - -/* - * Create a new OCB128_CONTEXT - */ -OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, - block128_f encrypt, block128_f decrypt, - ocb128_f stream) -{ - OCB128_CONTEXT *octx; - int ret; - - if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { - ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, - stream); - if (ret) - return octx; - OPENSSL_free(octx); - } - - return NULL; -} - -/* - * Initialise an existing OCB128_CONTEXT - */ -int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, - block128_f encrypt, block128_f decrypt, - ocb128_f stream) -{ - memset(ctx, 0, sizeof(*ctx)); - ctx->l_index = 0; - ctx->max_l_index = 5; - ctx->l = OPENSSL_malloc(ctx->max_l_index * 16); - if (ctx->l == NULL) - return 0; - - /* - * We set both the encryption and decryption key schedules - decryption - * needs both. Don't really need decryption schedule if only doing - * encryption - but it simplifies things to take it anyway - */ - ctx->encrypt = encrypt; - ctx->decrypt = decrypt; - ctx->stream = stream; - ctx->keyenc = keyenc; - ctx->keydec = keydec; - - /* L_* = ENCIPHER(K, zeros(128)) */ - ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); - - /* L_$ = double(L_*) */ - ocb_double(&ctx->l_star, &ctx->l_dollar); - - /* L_0 = double(L_$) */ - ocb_double(&ctx->l_dollar, ctx->l); - - /* L_{i} = double(L_{i-1}) */ - ocb_double(ctx->l, ctx->l+1); - ocb_double(ctx->l+1, ctx->l+2); - ocb_double(ctx->l+2, ctx->l+3); - ocb_double(ctx->l+3, ctx->l+4); - ctx->l_index = 4; /* enough to process up to 496 bytes */ - - return 1; -} - -/* - * Copy an OCB128_CONTEXT object - */ -int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, - void *keyenc, void *keydec) -{ - memcpy(dest, src, sizeof(OCB128_CONTEXT)); - if (keyenc) - dest->keyenc = keyenc; - if (keydec) - dest->keydec = keydec; - if (src->l) { - dest->l = OPENSSL_malloc(src->max_l_index * 16); - if (dest->l == NULL) - return 0; - memcpy(dest->l, src->l, (src->l_index + 1) * 16); - } - return 1; -} - -/* - * Set the IV to be used for this operation. Must be 1 - 15 bytes. - */ -int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, - size_t len, size_t taglen) -{ - unsigned char ktop[16], tmp[16], mask; - unsigned char stretch[24], nonce[16]; - size_t bottom, shift; - - /* - * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. - * We don't support this at this stage - */ - if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { - return -1; - } - - /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ - nonce[0] = ((taglen * 8) % 128) << 1; - memset(nonce + 1, 0, 15); - memcpy(nonce + 16 - len, iv, len); - nonce[15 - len] |= 1; - - /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ - memcpy(tmp, nonce, 16); - tmp[15] &= 0xc0; - ctx->encrypt(tmp, ktop, ctx->keyenc); - - /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ - memcpy(stretch, ktop, 16); - ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); - - /* bottom = str2num(Nonce[123..128]) */ - bottom = nonce[15] & 0x3f; - - /* Offset_0 = Stretch[1+bottom..128+bottom] */ - shift = bottom % 8; - ocb_block_lshift(stretch + (bottom / 8), shift, ctx->offset.c); - mask = 0xff; - mask <<= 8 - shift; - ctx->offset.c[15] |= - (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); - - return 1; -} - -/* - * Provide any AAD. This can be called multiple times. Only the final time can - * have a partial block - */ -int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, - size_t len) -{ - u64 i, all_num_blocks; - size_t num_blocks, last_len; - OCB_BLOCK tmp1; - OCB_BLOCK tmp2; - - /* Calculate the number of blocks of AAD provided now, and so far */ - num_blocks = len / 16; - all_num_blocks = num_blocks + ctx->blocks_hashed; - - /* Loop through all full blocks of AAD */ - for (i = ctx->blocks_hashed + 1; i <= all_num_blocks; i++) { - OCB_BLOCK *lookup; - OCB_BLOCK *aad_block; - - /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ - lookup = ocb_lookup_l(ctx, ocb_ntz(i)); - if (lookup == NULL) - return 0; - ocb_block16_xor(&ctx->offset_aad, lookup, &ctx->offset_aad); - - /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ - aad_block = (OCB_BLOCK *)(aad + ((i - ctx->blocks_hashed - 1) * 16)); - ocb_block16_xor(&ctx->offset_aad, aad_block, &tmp1); - ctx->encrypt(tmp1.c, tmp2.c, ctx->keyenc); - ocb_block16_xor(&ctx->sum, &tmp2, &ctx->sum); - } - - /* - * Check if we have any partial blocks left over. This is only valid in the - * last call to this function - */ - last_len = len % 16; - - if (last_len > 0) { - /* Offset_* = Offset_m xor L_* */ - ocb_block16_xor(&ctx->offset_aad, &ctx->l_star, &ctx->offset_aad); - - /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ - memset(&tmp1, 0, 16); - memcpy(&tmp1, aad + (num_blocks * 16), last_len); - ((unsigned char *)&tmp1)[last_len] = 0x80; - ocb_block16_xor(&ctx->offset_aad, &tmp1, &tmp2); - - /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ - ctx->encrypt(tmp2.c, tmp1.c, ctx->keyenc); - ocb_block16_xor(&ctx->sum, &tmp1, &ctx->sum); - } - - ctx->blocks_hashed = all_num_blocks; - - return 1; -} - -/* - * Provide any data to be encrypted. This can be called multiple times. Only - * the final time can have a partial block - */ -int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, - const unsigned char *in, unsigned char *out, - size_t len) -{ - u64 i, all_num_blocks; - size_t num_blocks, last_len; - OCB_BLOCK tmp1; - OCB_BLOCK tmp2; - OCB_BLOCK pad; - - /* - * Calculate the number of blocks of data to be encrypted provided now, and - * so far - */ - num_blocks = len / 16; - all_num_blocks = num_blocks + ctx->blocks_processed; - - if (num_blocks && all_num_blocks == (size_t)all_num_blocks - && ctx->stream != NULL) { - size_t max_idx = 0, top = (size_t)all_num_blocks; - - /* - * See how many L_{i} entries we need to process data at hand - * and pre-compute missing entries in the table [if any]... - */ - while (top >>= 1) - max_idx++; - if (ocb_lookup_l(ctx, max_idx) == NULL) - return 0; - - ctx->stream(in, out, num_blocks, ctx->keyenc, - (size_t)ctx->blocks_processed + 1, ctx->offset.c, - (const unsigned char (*)[16])ctx->l, ctx->checksum.c); - } else { - /* Loop through all full blocks to be encrypted */ - for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) { - OCB_BLOCK *lookup; - OCB_BLOCK *inblock; - OCB_BLOCK *outblock; - - /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ - lookup = ocb_lookup_l(ctx, ocb_ntz(i)); - if (lookup == NULL) - return 0; - ocb_block16_xor(&ctx->offset, lookup, &ctx->offset); - - /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ - inblock = - (OCB_BLOCK *)(in + ((i - ctx->blocks_processed - 1) * 16)); - ocb_block16_xor_misaligned(&ctx->offset, inblock, &tmp1); - /* Checksum_i = Checksum_{i-1} xor P_i */ - ocb_block16_xor_misaligned(&ctx->checksum, inblock, &ctx->checksum); - ctx->encrypt(tmp1.c, tmp2.c, ctx->keyenc); - outblock = - (OCB_BLOCK *)(out + ((i - ctx->blocks_processed - 1) * 16)); - ocb_block16_xor_misaligned(&ctx->offset, &tmp2, outblock); - } - } - - /* - * Check if we have any partial blocks left over. This is only valid in the - * last call to this function - */ - last_len = len % 16; - - if (last_len > 0) { - /* Offset_* = Offset_m xor L_* */ - ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset); - - /* Pad = ENCIPHER(K, Offset_*) */ - ctx->encrypt(ctx->offset.c, pad.c, ctx->keyenc); - - /* C_* = P_* xor Pad[1..bitlen(P_*)] */ - ocb_block_xor(in + (len / 16) * 16, (unsigned char *)&pad, last_len, - out + (num_blocks * 16)); - - /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ - memset(&tmp1, 0, 16); - memcpy(&tmp1, in + (len / 16) * 16, last_len); - ((unsigned char *)(&tmp1))[last_len] = 0x80; - ocb_block16_xor(&ctx->checksum, &tmp1, &ctx->checksum); - } - - ctx->blocks_processed = all_num_blocks; - - return 1; -} - -/* - * Provide any data to be decrypted. This can be called multiple times. Only - * the final time can have a partial block - */ -int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, - const unsigned char *in, unsigned char *out, - size_t len) -{ - u64 i, all_num_blocks; - size_t num_blocks, last_len; - OCB_BLOCK tmp1; - OCB_BLOCK tmp2; - OCB_BLOCK pad; - - /* - * Calculate the number of blocks of data to be decrypted provided now, and - * so far - */ - num_blocks = len / 16; - all_num_blocks = num_blocks + ctx->blocks_processed; - - if (num_blocks && all_num_blocks == (size_t)all_num_blocks - && ctx->stream != NULL) { - size_t max_idx = 0, top = (size_t)all_num_blocks; - - /* - * See how many L_{i} entries we need to process data at hand - * and pre-compute missing entries in the table [if any]... - */ - while (top >>= 1) - max_idx++; - if (ocb_lookup_l(ctx, max_idx) == NULL) - return 0; - - ctx->stream(in, out, num_blocks, ctx->keydec, - (size_t)ctx->blocks_processed + 1, ctx->offset.c, - (const unsigned char (*)[16])ctx->l, ctx->checksum.c); - } else { - /* Loop through all full blocks to be decrypted */ - for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) { - OCB_BLOCK *inblock; - OCB_BLOCK *outblock; - - /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ - OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); - if (lookup == NULL) - return 0; - ocb_block16_xor(&ctx->offset, lookup, &ctx->offset); - - /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ - inblock = - (OCB_BLOCK *)(in + ((i - ctx->blocks_processed - 1) * 16)); - ocb_block16_xor_misaligned(&ctx->offset, inblock, &tmp1); - ctx->decrypt(tmp1.c, tmp2.c, ctx->keydec); - outblock = - (OCB_BLOCK *)(out + ((i - ctx->blocks_processed - 1) * 16)); - ocb_block16_xor_misaligned(&ctx->offset, &tmp2, outblock); - - /* Checksum_i = Checksum_{i-1} xor P_i */ - ocb_block16_xor_misaligned(&ctx->checksum, outblock, &ctx->checksum); - } - } - - /* - * Check if we have any partial blocks left over. This is only valid in the - * last call to this function - */ - last_len = len % 16; - - if (last_len > 0) { - /* Offset_* = Offset_m xor L_* */ - ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset); - - /* Pad = ENCIPHER(K, Offset_*) */ - ctx->encrypt(ctx->offset.c, pad.c, ctx->keyenc); - - /* P_* = C_* xor Pad[1..bitlen(C_*)] */ - ocb_block_xor(in + (len / 16) * 16, (unsigned char *)&pad, last_len, - out + (num_blocks * 16)); - - /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ - memset(&tmp1, 0, 16); - memcpy(&tmp1, out + (len / 16) * 16, last_len); - ((unsigned char *)(&tmp1))[last_len] = 0x80; - ocb_block16_xor(&ctx->checksum, &tmp1, &ctx->checksum); - } - - ctx->blocks_processed = all_num_blocks; - - return 1; -} - -/* - * Calculate the tag and verify it against the supplied tag - */ -int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, - size_t len) -{ - OCB_BLOCK tmp1, tmp2; - - /* - * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) - */ - ocb_block16_xor(&ctx->checksum, &ctx->offset, &tmp1); - ocb_block16_xor(&tmp1, &ctx->l_dollar, &tmp2); - ctx->encrypt(tmp2.c, tmp1.c, ctx->keyenc); - ocb_block16_xor(&tmp1, &ctx->sum, &ctx->tag); - - if (len > 16 || len < 1) { - return -1; - } - - /* Compare the tag if we've been given one */ - if (tag) - return CRYPTO_memcmp(&ctx->tag, tag, len); - else - return -1; -} - -/* - * Retrieve the calculated tag - */ -int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) -{ - if (len > 16 || len < 1) { - return -1; - } - - /* Calculate the tag */ - CRYPTO_ocb128_finish(ctx, NULL, 0); - - /* Copy the tag into the supplied buffer */ - memcpy(tag, &ctx->tag, len); - - return 1; -} - -/* - * Release all resources - */ -void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) -{ - if (ctx) { - OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); - OPENSSL_cleanse(ctx, sizeof(*ctx)); - } -} - -#endif /* OPENSSL_NO_OCB */ |