/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // OSX compile fix... in6_var defines this in a struct which namespaces it for C++ ... why?!? struct prf_ra { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } prf_ra; #include #include // These are KERNEL_PRIVATE... why? #ifndef SIOCAUTOCONF_START #define SIOCAUTOCONF_START _IOWR('i', 132, struct in6_ifreq) /* accept rtadvd on this interface */ #endif #ifndef SIOCAUTOCONF_STOP #define SIOCAUTOCONF_STOP _IOWR('i', 133, struct in6_ifreq) /* stop accepting rtadv for this interface */ #endif // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- // This source is from: // http://www.opensource.apple.com/source/Libinfo/Libinfo-406.17/gen.subproj/getifmaddrs.c?txt // It's here because OSX 10.6 does not have this convenience function. #define SALIGN (sizeof(uint32_t) - 1) #define SA_RLEN(sa) ((sa)->sa_len ? (((sa)->sa_len + SALIGN) & ~SALIGN) : \ (SALIGN + 1)) #define MAX_SYSCTL_TRY 5 #define RTA_MASKS (RTA_GATEWAY | RTA_IFP | RTA_IFA) /* FreeBSD uses NET_RT_IFMALIST and RTM_NEWMADDR from */ /* We can use NET_RT_IFLIST2 and RTM_NEWMADDR2 on Darwin */ //#define DARWIN_COMPAT //#ifdef DARWIN_COMPAT #define GIM_SYSCTL_MIB NET_RT_IFLIST2 #define GIM_RTM_ADDR RTM_NEWMADDR2 //#else //#define GIM_SYSCTL_MIB NET_RT_IFMALIST //#define GIM_RTM_ADDR RTM_NEWMADDR //#endif // Not in 10.6 includes so use our own struct _intl_ifmaddrs { struct _intl_ifmaddrs *ifma_next; struct sockaddr *ifma_name; struct sockaddr *ifma_addr; struct sockaddr *ifma_lladdr; }; static inline int _intl_getifmaddrs(struct _intl_ifmaddrs **pif) { int icnt = 1; int dcnt = 0; int ntry = 0; size_t len; size_t needed; int mib[6]; int i; char *buf; char *data; char *next; char *p; struct ifma_msghdr2 *ifmam; struct _intl_ifmaddrs *ifa, *ift; struct rt_msghdr *rtm; struct sockaddr *sa; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; /* protocol */ mib[3] = 0; /* wildcard address family */ mib[4] = GIM_SYSCTL_MIB; mib[5] = 0; /* no flags */ do { if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0) return (-1); if ((buf = (char *)malloc(needed)) == NULL) return (-1); if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0) { if (errno != ENOMEM || ++ntry >= MAX_SYSCTL_TRY) { free(buf); return (-1); } free(buf); buf = NULL; } } while (buf == NULL); for (next = buf; next < buf + needed; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)(void *)next; if (rtm->rtm_version != RTM_VERSION) continue; switch (rtm->rtm_type) { case GIM_RTM_ADDR: ifmam = (struct ifma_msghdr2 *)(void *)rtm; if ((ifmam->ifmam_addrs & RTA_IFA) == 0) break; icnt++; p = (char *)(ifmam + 1); for (i = 0; i < RTAX_MAX; i++) { if ((RTA_MASKS & ifmam->ifmam_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)(void *)p; len = SA_RLEN(sa); dcnt += len; p += len; } break; } } data = (char *)malloc(sizeof(struct _intl_ifmaddrs) * icnt + dcnt); if (data == NULL) { free(buf); return (-1); } ifa = (struct _intl_ifmaddrs *)(void *)data; data += sizeof(struct _intl_ifmaddrs) * icnt; memset(ifa, 0, sizeof(struct _intl_ifmaddrs) * icnt); ift = ifa; for (next = buf; next < buf + needed; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)(void *)next; if (rtm->rtm_version != RTM_VERSION) continue; switch (rtm->rtm_type) { case GIM_RTM_ADDR: ifmam = (struct ifma_msghdr2 *)(void *)rtm; if ((ifmam->ifmam_addrs & RTA_IFA) == 0) break; p = (char *)(ifmam + 1); for (i = 0; i < RTAX_MAX; i++) { if ((RTA_MASKS & ifmam->ifmam_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)(void *)p; len = SA_RLEN(sa); switch (i) { case RTAX_GATEWAY: ift->ifma_lladdr = (struct sockaddr *)(void *)data; memcpy(data, p, len); data += len; break; case RTAX_IFP: ift->ifma_name = (struct sockaddr *)(void *)data; memcpy(data, p, len); data += len; break; case RTAX_IFA: ift->ifma_addr = (struct sockaddr *)(void *)data; memcpy(data, p, len); data += len; break; default: data += len; break; } p += len; } ift->ifma_next = ift + 1; ift = ift->ifma_next; break; } } free(buf); if (ift > ifa) { ift--; ift->ifma_next = NULL; *pif = ifa; } else { *pif = NULL; free(ifa); } return (0); } static inline void _intl_freeifmaddrs(struct _intl_ifmaddrs *ifmp) { free(ifmp); } // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- #include #include #include #include #include "../node/Constants.hpp" #include "../node/Utils.hpp" #include "../node/Mutex.hpp" #include "../node/Dictionary.hpp" #include "Arp.hpp" #include "OSUtils.hpp" #include "OSXEthernetTap.hpp" // ff:ff:ff:ff:ff:ff with no ADI static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff),0); static inline bool _setIpv6Stuff(const char *ifname,bool performNUD,bool acceptRouterAdverts) { struct in6_ndireq nd; struct in6_ifreq ifr; int s = socket(AF_INET6,SOCK_DGRAM,0); if (s <= 0) return false; memset(&nd,0,sizeof(nd)); strncpy(nd.ifname,ifname,sizeof(nd.ifname)); if (ioctl(s,SIOCGIFINFO_IN6,&nd)) { close(s); return false; } unsigned long oldFlags = (unsigned long)nd.ndi.flags; if (performNUD) nd.ndi.flags |= ND6_IFF_PERFORMNUD; else nd.ndi.flags &= ~ND6_IFF_PERFORMNUD; if (oldFlags != (unsigned long)nd.ndi.flags) { if (ioctl(s,SIOCSIFINFO_FLAGS,&nd)) { close(s); return false; } } memset(&ifr,0,sizeof(ifr)); strncpy(ifr.ifr_name,ifname,sizeof(ifr.ifr_name)); if (ioctl(s,acceptRouterAdverts ? SIOCAUTOCONF_START : SIOCAUTOCONF_STOP,&ifr)) { close(s); return false; } close(s); return true; } // Create an OSX-native utun device (utun# where # is desiredNumber) // Adapted from public domain utun example code by Jonathan Levin static int _make_utun(int desiredNumber) { struct sockaddr_ctl sc; struct ctl_info ctlInfo; struct ifreq ifr; memset(&ctlInfo, 0, sizeof(ctlInfo)); if (strlcpy(ctlInfo.ctl_name, UTUN_CONTROL_NAME, sizeof(ctlInfo.ctl_name)) >= sizeof(ctlInfo.ctl_name)) { return -1; } int fd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL); if (fd == -1) return -1; if (ioctl(fd, CTLIOCGINFO, &ctlInfo) == -1) { close(fd); return -1; } sc.sc_id = ctlInfo.ctl_id; sc.sc_len = sizeof(sc); sc.sc_family = AF_SYSTEM; sc.ss_sysaddr = AF_SYS_CONTROL; sc.sc_unit = desiredNumber + 1; if (connect(fd, (struct sockaddr *)&sc, sizeof(sc)) == -1) { close(fd); return -1; } memset(&ifr,0,sizeof(ifr)); sprintf(ifr.ifr_name,"utun%d",desiredNumber); if (ioctl(fd,SIOCGIFFLAGS,(void *)&ifr) < 0) { printf("SIOCGIFFLAGS failed\n"); } ifr.ifr_flags &= ~IFF_POINTOPOINT; if (ioctl(fd,SIOCSIFFLAGS,(void *)&ifr) < 0) { printf("clear IFF_POINTOPOINT failed\n"); } return fd; } namespace ZeroTier { static long globalTapsRunning = 0; static Mutex globalTapCreateLock; OSXEthernetTap::OSXEthernetTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *data,unsigned int len), void *arg) : _handler(handler), _arg(arg), _arp((Arp *)0), _nwid(nwid), _homePath(homePath), _mtu(mtu), _metric(metric), _fd(0), _utun(false), _enabled(true) { char devpath[64],ethaddr[64],mtustr[32],metstr[32],nwids[32]; struct stat stattmp; Utils::snprintf(nwids,sizeof(nwids),"%.16llx",nwid); if (mtu > 2800) throw std::runtime_error("max tap MTU is 2800"); Mutex::Lock _gl(globalTapCreateLock); // Read remembered previous device name, if any -- we'll try to reuse Dictionary devmap; std::string desiredDevice; { std::string devmapbuf; if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(),devmapbuf)) { devmap.fromString(devmapbuf); desiredDevice = devmap.get(nwids,""); } } if (::stat((_homePath + ZT_PATH_SEPARATOR_S + "tap.kext").c_str(),&stattmp) == 0) { // Try to init kext if it's there, otherwise revert to utun mode if (::stat("/dev/zt0",&stattmp)) { long kextpid = (long)vfork(); if (kextpid == 0) { ::chdir(homePath); OSUtils::redirectUnixOutputs("/dev/null",(const char *)0); ::execl("/sbin/kextload","/sbin/kextload","-q","-repository",homePath,"tap.kext",(const char *)0); ::_exit(-1); } else if (kextpid > 0) { int exitcode = -1; ::waitpid(kextpid,&exitcode,0); } ::usleep(500); // give tap device driver time to start up and try again if (::stat("/dev/zt0",&stattmp)) _utun = true; } if (!_utun) { // See if we can re-use the last device we had. bool recalledDevice = false; if (desiredDevice.length() > 2) { Utils::snprintf(devpath,sizeof(devpath),"/dev/%s",desiredDevice.c_str()); if (stat(devpath,&stattmp) == 0) { _fd = ::open(devpath,O_RDWR); if (_fd > 0) { _dev = desiredDevice; recalledDevice = true; } } } // Open the first unused tap device if we didn't recall a previous one. if (!recalledDevice) { for(int i=0;i<64;++i) { Utils::snprintf(devpath,sizeof(devpath),"/dev/zt%d",i); if (stat(devpath,&stattmp)) { _utun = true; break; } _fd = ::open(devpath,O_RDWR); if (_fd > 0) { char foo[16]; Utils::snprintf(foo,sizeof(foo),"zt%d",i); _dev = foo; break; } } } if (_fd <= 0) _utun = true; } } else { _utun = true; } if (_utun) { // Use OSX built-in utun device if kext is not available or doesn't work int utunNo = 0; if ((desiredDevice.length() > 4)&&(desiredDevice.substr(0,4) == "utun")) { utunNo = Utils::strToInt(desiredDevice.substr(4).c_str()); if (utunNo >= 0) _fd = _make_utun(utunNo); } if (_fd <= 0) { // Start at utun8 to leave lower utuns unused since other stuff might // want them -- OpenVPN, cjdns, etc. I'm not sure if those are smart // enough to scan upward like this. for(utunNo=8;utunNo<=256;++utunNo) { if ((_fd = _make_utun(utunNo)) > 0) break; } } if (_fd <= 0) throw std::runtime_error("unable to find/load ZeroTier tap driver OR use built-in utun driver in OSX; permission or system problem or too many open devices?"); Utils::snprintf(devpath,sizeof(devpath),"utun%d",utunNo); _dev = devpath; // Configure address and bring it up Utils::snprintf(mtustr,sizeof(mtustr),"%u",_mtu); Utils::snprintf(metstr,sizeof(metstr),"%u",_metric); long cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),"mtu",mtustr,"metric",metstr,"up",(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); if (exitcode) { ::close(_fd); throw std::runtime_error("ifconfig failure activating utun interface"); } } } else { // Use our ZeroTier OSX tun/tap driver for zt# Ethernet tap device if (fcntl(_fd,F_SETFL,fcntl(_fd,F_GETFL) & ~O_NONBLOCK) == -1) { ::close(_fd); throw std::runtime_error("unable to set flags on file descriptor for TAP device"); } // Configure MAC address and MTU, bring interface up Utils::snprintf(ethaddr,sizeof(ethaddr),"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",(int)mac[0],(int)mac[1],(int)mac[2],(int)mac[3],(int)mac[4],(int)mac[5]); Utils::snprintf(mtustr,sizeof(mtustr),"%u",_mtu); Utils::snprintf(metstr,sizeof(metstr),"%u",_metric); long cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),"lladdr",ethaddr,"mtu",mtustr,"metric",metstr,"up",(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); if (exitcode) { ::close(_fd); throw std::runtime_error("ifconfig failure setting link-layer address and activating tap interface"); } } _setIpv6Stuff(_dev.c_str(),true,false); } // Set close-on-exec so that devices cannot persist if we fork/exec for update fcntl(_fd,F_SETFD,fcntl(_fd,F_GETFD) | FD_CLOEXEC); ::pipe(_shutdownSignalPipe); ++globalTapsRunning; devmap[nwids] = _dev; OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(),devmap.toString()); _thread = Thread::start(this); } OSXEthernetTap::~OSXEthernetTap() { Mutex::Lock _gl(globalTapCreateLock); ::write(_shutdownSignalPipe[1],(const void *)this,1); // writing a byte causes thread to exit Thread::join(_thread); ::close(_fd); ::close(_shutdownSignalPipe[0]); ::close(_shutdownSignalPipe[1]); if (_utun) { delete _arp; } else { if (--globalTapsRunning <= 0) { globalTapsRunning = 0; // sanity check -- should not be possible char tmp[16384]; sprintf(tmp,"%s/%s",_homePath.c_str(),"tap.kext"); long kextpid = (long)vfork(); if (kextpid == 0) { OSUtils::redirectUnixOutputs("/dev/null",(const char *)0); ::execl("/sbin/kextunload","/sbin/kextunload",tmp,(const char *)0); ::_exit(-1); } else if (kextpid > 0) { int exitcode = -1; ::waitpid(kextpid,&exitcode,0); } } } } void OSXEthernetTap::setEnabled(bool en) { _enabled = en; // TODO: interface status change } bool OSXEthernetTap::enabled() const { return _enabled; } static bool ___removeIp(const std::string &_dev,const InetAddress &ip) { long cpid = (long)vfork(); if (cpid == 0) { execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),"inet",ip.toIpString().c_str(),"-alias",(const char *)0); _exit(-1); } else if (cpid > 0) { int exitcode = -1; waitpid(cpid,&exitcode,0); return (exitcode == 0); } return false; // never reached, make compiler shut up about return value } bool OSXEthernetTap::addIp(const InetAddress &ip) { if (!ip) return false; std::vector allIps(ips()); if (std::binary_search(allIps.begin(),allIps.end(),ip)) return true; // Remove and reconfigure if address is the same but netmask is different for(std::vector::iterator i(allIps.begin());i!=allIps.end();++i) { if ((i->ipsEqual(ip))&&(i->netmaskBits() != ip.netmaskBits())) { if (___removeIp(_dev,*i)) break; } } if (_utun) { long cpid = (long)vfork(); if (cpid == 0) { if (ip.ss_family == AF_INET6) { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),"inet6",ip.toString().c_str(),"alias",(const char *)0); } else { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),ip.toString().c_str(),ip.toIpString().c_str(),"alias",(const char *)0); } ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); if (exitcode == 0) { if (ip.ss_family == AF_INET) { // Add route to network over tun for IPv4 -- otherwise it behaves // as a simple point to point tunnel instead of a true route. cpid = (long)vfork(); if (cpid == 0) { ::close(STDERR_FILENO); ::close(STDOUT_FILENO); ::execl("/sbin/route","/sbin/route","add",ip.network().toString().c_str(),ip.toIpString().c_str(),(const char *)0); ::exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); return (exitcode == 0); } } else return true; } } } else { long cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),ip.isV4() ? "inet" : "inet6",ip.toString().c_str(),"alias",(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); return (exitcode == 0); } } return false; } bool OSXEthernetTap::removeIp(const InetAddress &ip) { if (!ip) return true; std::vector allIps(ips()); if (!std::binary_search(allIps.begin(),allIps.end(),ip)) { if (___removeIp(_dev,ip)) return true; } return false; } std::vector OSXEthernetTap::ips() const { struct ifaddrs *ifa = (struct ifaddrs *)0; if (getifaddrs(&ifa)) return std::vector(); std::vector r; struct ifaddrs *p = ifa; while (p) { if ((!strcmp(p->ifa_name,_dev.c_str()))&&(p->ifa_addr)&&(p->ifa_netmask)&&(p->ifa_addr->sa_family == p->ifa_netmask->sa_family)) { switch(p->ifa_addr->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)p->ifa_addr; struct sockaddr_in *nm = (struct sockaddr_in *)p->ifa_netmask; r.push_back(InetAddress(&(sin->sin_addr.s_addr),4,Utils::countBits((uint32_t)nm->sin_addr.s_addr))); } break; case AF_INET6: { struct sockaddr_in6 *sin = (struct sockaddr_in6 *)p->ifa_addr; struct sockaddr_in6 *nm = (struct sockaddr_in6 *)p->ifa_netmask; uint32_t b[4]; memcpy(b,nm->sin6_addr.s6_addr,sizeof(b)); r.push_back(InetAddress(sin->sin6_addr.s6_addr,16,Utils::countBits(b[0]) + Utils::countBits(b[1]) + Utils::countBits(b[2]) + Utils::countBits(b[3]))); } break; } } p = p->ifa_next; } if (ifa) freeifaddrs(ifa); std::sort(r.begin(),r.end()); std::unique(r.begin(),r.end()); return r; } void OSXEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { char putBuf[4096]; if ((_fd > 0)&&(len <= _mtu)&&(_enabled)) { to.copyTo(putBuf,6); from.copyTo(putBuf + 6,6); *((uint16_t *)(putBuf + 12)) = htons((uint16_t)etherType); memcpy(putBuf + 14,data,len); len += 14; ::write(_fd,putBuf,len); } } std::string OSXEthernetTap::deviceName() const { return _dev; } void OSXEthernetTap::setFriendlyName(const char *friendlyName) { } void OSXEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed) { std::vector newGroups; struct _intl_ifmaddrs *ifmap = (struct _intl_ifmaddrs *)0; if (!_intl_getifmaddrs(&ifmap)) { struct _intl_ifmaddrs *p = ifmap; while (p) { if (p->ifma_addr->sa_family == AF_LINK) { struct sockaddr_dl *in = (struct sockaddr_dl *)p->ifma_name; struct sockaddr_dl *la = (struct sockaddr_dl *)p->ifma_addr; if ((la->sdl_alen == 6)&&(in->sdl_nlen <= _dev.length())&&(!memcmp(_dev.data(),in->sdl_data,in->sdl_nlen))) newGroups.push_back(MulticastGroup(MAC(la->sdl_data + la->sdl_nlen,6),0)); } p = p->ifma_next; } _intl_freeifmaddrs(ifmap); } std::vector allIps(ips()); for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void OSXEthernetTap::threadMain() throw() { fd_set readfds,nullfds; MAC to,from; int n,nfds,r; char getBuf[8194]; Thread::sleep(500); FD_ZERO(&readfds); FD_ZERO(&nullfds); nfds = (int)std::max(_shutdownSignalPipe[0],_fd) + 1; r = 0; for(;;) { FD_SET(_shutdownSignalPipe[0],&readfds); FD_SET(_fd,&readfds); select(nfds,&readfds,&nullfds,&nullfds,(struct timeval *)0); if (FD_ISSET(_shutdownSignalPipe[0],&readfds)) // writes to shutdown pipe terminate thread break; if (FD_ISSET(_fd,&readfds)) { n = (int)::read(_fd,getBuf + r,sizeof(getBuf) - r); if (n < 0) { if ((errno != EINTR)&&(errno != ETIMEDOUT)) break; } else { // Some tap drivers like to send the ethernet frame and the // payload in two chunks, so handle that by accumulating // data until we have at least a frame. r += n; if (r > 14) { if (r > ((int)_mtu + 14)) // sanity check for weird TAP behavior on some platforms r = _mtu + 14; if (_enabled) { to.setTo(getBuf,6); from.setTo(getBuf + 6,6); unsigned int etherType = ntohs(((const uint16_t *)getBuf)[6]); // TODO: VLAN support _handler(_arg,_nwid,from,to,etherType,0,(const void *)(getBuf + 14),r - 14); } r = 0; } } } } } } // namespace ZeroTier