/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef ZT_CAPABILITY_HPP #define ZT_CAPABILITY_HPP #include #include #include #include "Constants.hpp" #include "Address.hpp" #include "C25519.hpp" #include "Utils.hpp" #include "Buffer.hpp" #include "Identity.hpp" #include "../include/ZeroTierOne.h" namespace ZeroTier { class RuntimeEnvironment; /** * A set of grouped and signed network flow rules * * The use of capabilities implements capability-based security on ZeroTIer * virtual networks for efficient and manageable network micro-segmentation. * * On the sending side the sender does the following for each packet: * * (1) Evaluates its capabilities in ascending order of ID to determine * which capability allows it to transmit this packet. * (2) If it has not done so lately, it then sends this capability to the * receving peer ("presents" it). * (3) The sender then sends the packet. * * On the receiving side the receiver does the following for each packet: * * (1) Evaluates the capabilities of the sender (that the sender has * presented) to determine if the sender was allowed to send this. * (2) Evaluates its own capabilities to determine if it should receive * and process this packet. * (3) If both check out, it receives the packet. * * Note that rules in capabilities can do other things as well such as TEE * or REDIRECT packets. See Filter and ZT_VirtualNetworkRule. */ class Capability { public: Capability() { memset(this,0,sizeof(Capability)); } /** * @param id Capability ID * @param nwid Network ID * @param expiration Expiration relative to network config timestamp * @param name Capability short name (max strlen == ZT_MAX_CAPABILITY_NAME_LENGTH, overflow ignored) * @param mccl Maximum custody chain length (1 to create non-transferrable capability) * @param rules Network flow rules for this capability * @param ruleCount Number of flow rules */ Capability(uint32_t id,uint64_t nwid,uint64_t expiration,const char *name,unsigned int mccl,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount) { memset(this,0,sizeof(Capability)); _nwid = nwid; _expiration = expiration; _id = id; _maxCustodyChainLength = (mccl > 0) ? ((mccl < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) ? mccl : (unsigned int)ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) : 1; _ruleCount = (ruleCount < ZT_MAX_CAPABILITY_RULES) ? ruleCount : ZT_MAX_CAPABILITY_RULES; if (_ruleCount) memcpy(_rules,rules,sizeof(ZT_VirtualNetworkRule) * _ruleCount); } /** * @return Rules -- see ruleCount() for size of array */ inline const ZT_VirtualNetworkRule *rules() const { return _rules; } /** * @return Number of rules in rules() */ inline unsigned int ruleCount() const { return _ruleCount; } /** * @return ID and evaluation order of this capability in network */ inline uint32_t id() const { return _id; } /** * @return Network ID for which this capability was issued */ inline uint64_t networkId() const { return _nwid; } /** * Sign this capability and add signature to its chain of custody * * If this returns false, this object should be considered to be * in an undefined state and should be discarded. False can be returned * if there is no more room for signatures (max chain length reached) * or if the 'from' identity does not include a secret key to allow * it to sign anything. * * @param from Signing identity (must have secret) * @param to Recipient of this signature * @return True if signature successful and chain of custody appended */ inline bool sign(const Identity &from,const Address &to) { try { Buffer<(sizeof(Capability) * 2)> tmp; for(unsigned int i=0;((i<_maxCustodyChainLength)&&(iserialize(tmp,true); _custody[i].signature = from.sign(tmp.data(),tmp.size()); return true; } } } catch ( ... ) {} return false; } /** * Verify this capability's chain of custody * * This returns a tri-state result. A return value of zero indicates that * the chain of custody is valid and all signatures are okay. A positive * return value means at least one WHOIS was issued for a missing signing * identity and we should retry later. A negative return value means that * this chain or one of its signature is BAD and this capability should * be discarded. * * Note that the entire chain is checked regardless of verifyInChain. * * @param RR Runtime environment to provide for peer lookup, etc. * @param verifyInChain Also check to ensure that this capability was at some point properly issued to this peer (if non-null) * @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or chain */ int verify(const RuntimeEnvironment *RR,const Address &verifyInChain) const; template inline void serialize(Buffer &b,const bool forSign = false) const { if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); b.append(_id); b.append(_nwid); b.append(_expiration); b.append((uint16_t)_ruleCount); for(unsigned int i=0;i<_ruleCount;++i) { // Each rule consists of its 8-bit type followed by the size of that type's // field followed by field data. The inclusion of the size will allow non-supported // rules to be ignored but still parsed. b.append((uint8_t)_rules[i].t); switch((ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f)) { //case ZT_NETWORK_RULE_ACTION_DROP: //case ZT_NETWORK_RULE_ACTION_ACCEPT: default: b.append((uint8_t)0); break; case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_REDIRECT: case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: b.append((uint8_t)5); Address(_rules[i].v.zt).appendTo(b); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: b.append((uint8_t)2); b.append((uint16_t)_rules[i].v.vlanId); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.vlanPcp); break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.vlanDei); break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: b.append((uint8_t)2); b.append((uint16_t)_rules[i].v.etherType); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: b.append((uint8_t)6); b.append(_rules[i].v.mac,6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: b.append((uint8_t)5); b.append(&(_rules[i].v.ipv4.ip),4); b.append((uint8_t)_rules[i].v.ipv4.mask); break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: b.append((uint8_t)17); b.append(_rules[i].v.ipv6.ip,16); b.append((uint8_t)_rules[i].v.ipv6.mask); break; case ZT_NETWORK_RULE_MATCH_IP_TOS: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.ipTos); break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: b.append((uint8_t)1); b.append((uint8_t)_rules[i].v.ipProtocol); break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: b.append((uint8_t)4); b.append((uint16_t)_rules[i].v.port[0]); b.append((uint16_t)_rules[i].v.port[1]); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: b.append((uint8_t)16); b.append((uint64_t)_rules[i].v.characteristics[0]); b.append((uint64_t)_rules[i].v.characteristics[1]); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: b.append((uint8_t)4); b.append((uint16_t)_rules[i].v.frameSize[0]); b.append((uint16_t)_rules[i].v.frameSize[1]); break; } } b.append((uint8_t)_maxCustodyChainLength); for(unsigned int i=0;;++i) { if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) { _custody[i].to.appendTo(b); _custody[i].from.appendTo(b); if (!forSign) { b.append((uint8_t)1); // 1 == Ed25519 signature b.append((uint16_t)ZT_C25519_SIGNATURE_LEN); // length of signature b.append(_custody[i].signature.data,ZT_C25519_SIGNATURE_LEN); } } else { b.append((unsigned char)0,ZT_ADDRESS_LENGTH); // zero 'to' terminates chain break; } } // This is the size of any additional fields. If it is nonzero, // the last 2 bytes of the next field will be another size field. b.append((uint16_t)0); if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); } template inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0) { memset(this,0,sizeof(Capability)); unsigned int p = startAt; _id = b.template at(p); p += 4; _nwid = b.template at(p); p += 8; _expiration = b.template at(p); p += 8; _ruleCount = b.template at(p); p += 2; if (_ruleCount > ZT_MAX_CAPABILITY_RULES) throw std::runtime_error("rule count overflow"); for(unsigned int i=0;i<_ruleCount;++i) { _rules[i].t = (uint8_t)b[p++]; const unsigned int fieldLen = (unsigned int)b[p++]; switch((ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f)) { default: break; case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_REDIRECT: case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: _rules[i].v.zt = Address(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt(); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: _rules[i].v.vlanId = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: _rules[i].v.vlanPcp = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: _rules[i].v.vlanDei = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: _rules[i].v.etherType = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: memcpy(_rules[i].v.mac,b.field(p,6),6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: memcpy(&(_rules[i].v.ipv4.ip),b.field(p,4),4); _rules[i].v.ipv4.mask = (uint8_t)b[p + 4]; break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: memcpy(_rules[i].v.ipv6.ip,b.field(p,16),16); _rules[i].v.ipv6.mask = (uint8_t)b[p + 16]; break; case ZT_NETWORK_RULE_MATCH_IP_TOS: _rules[i].v.ipTos = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: _rules[i].v.ipProtocol = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: _rules[i].v.port[0] = b.template at(p); _rules[i].v.port[1] = b.template at(p + 2); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: _rules[i].v.characteristics[0] = b.template at(p); _rules[i].v.characteristics[1] = b.template at(p + 8); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: _rules[i].v.frameSize[0] = b.template at(p); _rules[i].v.frameSize[0] = b.template at(p + 2); break; } p += fieldLen; } _maxCustodyChainLength = (unsigned int)b[p++]; if ((_maxCustodyChainLength < 1)||(_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) throw std::runtime_error("invalid max custody chain length"); for(unsigned int i;;++i) { const Address to(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; if (!to) break; if ((i >= _maxCustodyChainLength)||(i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) throw std::runtime_error("unterminated custody chain"); _custody[i].to = to; _custody[i].from.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; memcpy(_custody[i].signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN); p += ZT_C25519_SIGNATURE_LEN; } p += 2 + b.template at(p); if (p > b.size()) throw std::runtime_error("extended field overflow"); return (p - startAt); } // Provides natural sort order by ID inline bool operator<(const Capability &c) const { return (_id < c._id); } private: uint64_t _nwid; uint64_t _expiration; uint32_t _id; unsigned int _maxCustodyChainLength; unsigned int _ruleCount; ZT_VirtualNetworkRule _rules[ZT_MAX_CAPABILITY_RULES]; struct { Address to; Address from; C25519::Signature signature; } _custody[ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH]; }; } // namespace ZeroTier #endif