/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifndef _ZT_IDENTITY_HPP
#define _ZT_IDENTITY_HPP
#include
#include
#include
#include "EllipticCurveKey.hpp"
#include "EllipticCurveKeyPair.hpp"
#include "Array.hpp"
#include "Utils.hpp"
#include "Address.hpp"
#include "Buffer.hpp"
/**
* Maximum length for a serialized identity
*/
#define IDENTITY_MAX_BINARY_SERIALIZED_LENGTH ((ZT_EC_MAX_BYTES * 2) + 256)
namespace ZeroTier {
/**
* A ZeroTier identity
*
* An identity consists of a public key, a 40-bit ZeroTier address computed
* from that key in a collision-resistant fashion, and a self-signature.
*
* The address derivation algorithm makes it computationally very expensive to
* search for a different public key that duplicates an existing address. (See
* code for deriveAddress() for this algorithm.)
*
* After derivation, the address must be checked against isReserved(). If the
* address is reserved, generation is repeated until a valid address results.
*
* Serialization of an identity:
*
* <[5] address> - 40-bit ZeroTier network address
* <[1] type> - Identity type ID (rest is type-dependent)
* <[1] key length> - Length of public key
* <[n] public key> - Elliptic curve public key
* <[1] sig length> - Length of ECDSA self-signature
* <[n] signature> - ECDSA signature of first four fields
* [<[1] key length>] - [Optional] Length of private key
* [<[n] private key>] - [Optional] Private key
*
* Local storage of an identity also requires storage of its private key.
*/
class Identity
{
public:
/**
* Identity types
*/
enum Type
{
/* Elliptic curve NIST-P-521 and ECDSA signature */
IDENTITY_TYPE_NIST_P_521 = 1
/* We won't need another identity type until quantum computers with
* tens of thousands of qubits are a reality. */
};
Identity() :
_keyPair((EllipticCurveKeyPair *)0)
{
}
Identity(const Identity &id) :
_keyPair((id._keyPair) ? new EllipticCurveKeyPair(*id._keyPair) : (EllipticCurveKeyPair *)0),
_publicKey(id._publicKey),
_address(id._address),
_signature(id._signature)
{
}
Identity(const char *str)
throw(std::invalid_argument) :
_keyPair((EllipticCurveKeyPair *)0)
{
if (!fromString(str))
throw std::invalid_argument("invalid string-serialized identity");
}
Identity(const std::string &str)
throw(std::invalid_argument) :
_keyPair((EllipticCurveKeyPair *)0)
{
if (!fromString(str))
throw std::invalid_argument("invalid string-serialized identity");
}
template
Identity(const Buffer &b,unsigned int startAt = 0)
throw(std::out_of_range,std::invalid_argument) :
_keyPair((EllipticCurveKeyPair *)0)
{
deserialize(b,startAt);
}
~Identity()
{
delete _keyPair;
}
inline Identity &operator=(const Identity &id)
{
_keyPair = (id._keyPair) ? new EllipticCurveKeyPair(*id._keyPair) : (EllipticCurveKeyPair *)0;
_publicKey = id._publicKey;
_address = id._address;
_signature = id._signature;
return *this;
}
/**
* Generate a new identity (address, key pair)
*
* This is a somewhat time consuming operation by design, as the address
* is derived from the key using a purposefully expensive many-round
* hash/encrypt/hash operation. This took about two seconds on a 2.4ghz
* Intel Core i5 in 2013.
*
* In the very unlikely event that a reserved address is created, generate
* will automatically run again.
*/
void generate();
/**
* Performs local validation, with two levels available
*
* With the parameter false, this performs self-signature verification
* which checks the basic integrity of the key and identity. Setting the
* parameter to true performs a fairly time consuming computation to
* check that the address was properly derived from the key. This is
* normally not done unless a conflicting identity is received, in
* which case the invalid identity is thrown out.
*
* @param doAddressDerivationCheck If true, do the time-consuming address check
* @return True if validation check passes
*/
bool locallyValidate(bool doAddressDerivationCheck) const;
/**
* @return Private key pair or NULL if not included with this identity
*/
inline const EllipticCurveKeyPair *privateKeyPair() const throw() { return _keyPair; }
/**
* @return True if this identity has its private portion
*/
inline bool hasPrivate() const throw() { return (_keyPair); }
/**
* Encrypt a block of data to send to another identity
*
* This identity must have a secret key.
*
* The encrypted data format is:
* <[8] Salsa20 initialization vector>
* <[8] first 8 bytes of HMAC-SHA-256 of ciphertext>
* <[...] encrypted compressed data>
*
* Keying is accomplished using agree() (KDF function is in the
* EllipticCurveKeyPair.cpp source) to generate 64 bytes of key. The first
* 32 bytes are used as the Salsa20 key, and the last 32 bytes are used
* as the HMAC key.
*
* @param to Identity of recipient of encrypted message
* @param data Data to encrypt
* @param len Length of data
* @return Encrypted data or empty string on failure
*/
std::string encrypt(const Identity &to,const void *data,unsigned int len) const;
/**
* Decrypt a message encrypted with encrypt()
*
* This identity must have a secret key.
*
* @param from Identity of sender of encrypted message
* @param cdata Encrypted message
* @param len Length of encrypted message
* @return Decrypted data or empty string on failure
*/
std::string decrypt(const Identity &from,const void *cdata,unsigned int len) const;
/**
* Shortcut method to perform key agreement with another identity
*
* This identity must have its private portion.
*
* @param id Identity to agree with
* @param key Result parameter to fill with key bytes
* @param klen Length of key in bytes
* @return Was agreement successful?
*/
inline bool agree(const Identity &id,void *key,unsigned int klen) const
{
if ((id)&&(_keyPair))
return _keyPair->agree(id._publicKey,(unsigned char *)key,klen);
return false;
}
/**
* Sign a hash with this identity's private key
*
* @param sha256 32-byte hash to sign
* @return ECDSA signature or empty string on failure or if identity has no private portion
*/
inline std::string sign(const void *sha256) const
{
if (_keyPair)
return _keyPair->sign(sha256);
return std::string();
}
/**
* Sign a block of data with this identity's private key
*
* This is a shortcut to SHA-256 hashing then signing.
*
* @param sha256 32-byte hash to sign
* @return ECDSA signature or empty string on failure or if identity has no private portion
*/
inline std::string sign(const void *data,unsigned int len) const
{
if (_keyPair)
return _keyPair->sign(data,len);
return std::string();
}
/**
* Verify something signed with this identity's public key
*
* @param sha256 32-byte hash to verify
* @param sigbytes Signature bytes
* @param siglen Length of signature
* @return True if signature is valid
*/
inline bool verifySignature(const void *sha256,const void *sigbytes,unsigned int siglen) const
{
return EllipticCurveKeyPair::verify(sha256,_publicKey,sigbytes,siglen);
}
/**
* Verify something signed with this identity's public key
*
* @param data Data to verify
* @param len Length of data to verify
* @param sigbytes Signature bytes
* @param siglen Length of signature
* @return True if signature is valid
*/
inline bool verifySignature(const void *data,unsigned int len,const void *sigbytes,unsigned int siglen) const
{
return EllipticCurveKeyPair::verify(data,len,_publicKey,sigbytes,siglen);
}
/**
* @return Public key (available in all identities)
*/
inline const EllipticCurveKey &publicKey() const throw() { return _publicKey; }
/**
* @return Identity type
*/
inline Type type() const throw() { return IDENTITY_TYPE_NIST_P_521; }
/**
* @return This identity's address
*/
inline const Address &address() const throw() { return _address; }
/**
* Serialize this identity (binary)
*
* @param b Destination buffer to append to
* @param includePrivate If true, include private key component (if present) (default: false)
* @throws std::out_of_range Buffer too small
*/
template
inline void serialize(Buffer &b,bool includePrivate = false) const
throw(std::out_of_range)
{
b.append(_address.data(),ZT_ADDRESS_LENGTH);
b.append((unsigned char)IDENTITY_TYPE_NIST_P_521);
b.append((unsigned char)(_publicKey.size() & 0xff));
b.append(_publicKey.data(),_publicKey.size());
b.append((unsigned char)(_signature.length() & 0xff));
b.append(_signature);
if ((includePrivate)&&(_keyPair)) {
b.append((unsigned char)(_keyPair->priv().size() & 0xff));
b.append(_keyPair->priv().data(),_keyPair->priv().size());
} else b.append((unsigned char)0);
}
/**
* Deserialize a binary serialized identity
*
* If an exception is thrown, the Identity object is left in an undefined
* state and should not be used.
*
* @param b Buffer containing serialized data
* @param startAt Index within buffer of serialized data (default: 0)
* @return Length of serialized data read from buffer
* @throws std::out_of_range Buffer too small
* @throws std::invalid_argument Serialized data invalid
*/
template
inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0)
throw(std::out_of_range,std::invalid_argument)
{
delete _keyPair;
_keyPair = (EllipticCurveKeyPair *)0;
unsigned int p = startAt;
_address = b.field(p,ZT_ADDRESS_LENGTH);
p += ZT_ADDRESS_LENGTH;
if (b[p++] != IDENTITY_TYPE_NIST_P_521)
throw std::invalid_argument("Identity: deserialize(): unsupported identity type");
unsigned int publicKeyLength = b[p++];
if (!publicKeyLength)
throw std::invalid_argument("Identity: deserialize(): no public key");
_publicKey.set(b.field(p,publicKeyLength),publicKeyLength);
p += publicKeyLength;
unsigned int signatureLength = b[p++];
if (!signatureLength)
throw std::invalid_argument("Identity: deserialize(): no signature");
_signature.assign((const char *)b.field(p,signatureLength),signatureLength);
p += signatureLength;
unsigned int privateKeyLength = b[p++];
if (privateKeyLength) {
_keyPair = new EllipticCurveKeyPair(_publicKey,EllipticCurveKey(b.field(p,privateKeyLength),privateKeyLength));
p += privateKeyLength;
}
return (p - startAt);
}
/**
* Serialize to a more human-friendly string
*
* @param includePrivate If true, include private key (if it exists)
* @return ASCII string representation of identity
*/
std::string toString(bool includePrivate) const;
/**
* Deserialize a human-friendly string
*
* Note: validation is for the format only. The locallyValidate() method
* must be used to check signature and address/key correspondence.
*
* @param str String to deserialize
* @return True if deserialization appears successful
*/
bool fromString(const char *str);
inline bool fromString(const std::string &str) { return fromString(str.c_str()); }
/**
* @return True if this identity contains something
*/
inline operator bool() const throw() { return (_publicKey.size()); }
inline bool operator==(const Identity &id) const
throw()
{
if (_address == id._address) {
if ((_keyPair)&&(id._keyPair))
return (*_keyPair == *id._keyPair);
return (_publicKey == id._publicKey);
}
return false;
}
inline bool operator<(const Identity &id) const
throw()
{
if (_address < id._address)
return true;
else if (_address == id._address)
return (_publicKey < id._publicKey);
return false;
}
inline bool operator!=(const Identity &id) const throw() { return !(*this == id); }
inline bool operator>(const Identity &id) const throw() { return (id < *this); }
inline bool operator<=(const Identity &id) const throw() { return !(id < *this); }
inline bool operator>=(const Identity &id) const throw() { return !(*this < id); }
private:
// Compute an address from public key bytes
static Address deriveAddress(const void *keyBytes,unsigned int keyLen);
EllipticCurveKeyPair *_keyPair;
EllipticCurveKey _publicKey;
Address _address;
std::string _signature;
};
} // namespace ZeroTier
#endif