/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_INETADDRESS_HPP
#define ZT_INETADDRESS_HPP
#include
#include
#include
#include "Constants.hpp"
#include "../include/ZeroTierOne.h"
#include "Utils.hpp"
#include "MAC.hpp"
#include "Buffer.hpp"
namespace ZeroTier {
/**
* Maximum integer value of enum IpScope
*/
#define ZT_INETADDRESS_MAX_SCOPE 7
/**
* Extends sockaddr_storage with friendly C++ methods
*
* This is basically a "mixin" for sockaddr_storage. It adds methods and
* operators, but does not modify the structure. This can be cast to/from
* sockaddr_storage and used interchangeably. DO NOT change this by e.g.
* adding non-static fields, since much code depends on this identity.
*/
struct InetAddress : public sockaddr_storage
{
/**
* Loopback IPv4 address (no port)
*/
static const InetAddress LO4;
/**
* Loopback IPV6 address (no port)
*/
static const InetAddress LO6;
/**
* IP address scope
*
* Note that these values are in ascending order of path preference and
* MUST remain that way or Path must be changed to reflect. Also be sure
* to change ZT_INETADDRESS_MAX_SCOPE if the max changes.
*/
enum IpScope
{
IP_SCOPE_NONE = 0, // NULL or not an IP address
IP_SCOPE_MULTICAST = 1, // 224.0.0.0 and other V4/V6 multicast IPs
IP_SCOPE_LOOPBACK = 2, // 127.0.0.1, ::1, etc.
IP_SCOPE_PSEUDOPRIVATE = 3, // 28.x.x.x, etc. -- unofficially unrouted IPv4 blocks often "bogarted"
IP_SCOPE_GLOBAL = 4, // globally routable IP address (all others)
IP_SCOPE_LINK_LOCAL = 5, // 169.254.x.x, IPv6 LL
IP_SCOPE_SHARED = 6, // currently unused, formerly used for carrier-grade NAT ranges
IP_SCOPE_PRIVATE = 7 // 10.x.x.x, 192.168.x.x, etc.
};
// Can be used with the unordered maps and sets in c++11. We don't use C++11 in the core
// but this is safe to put here.
struct Hasher
{
inline std::size_t operator()(const InetAddress &a) const { return (std::size_t)a.hashCode(); }
};
InetAddress() { memset(this,0,sizeof(InetAddress)); }
InetAddress(const InetAddress &a) { memcpy(this,&a,sizeof(InetAddress)); }
InetAddress(const InetAddress *a) { memcpy(this,a,sizeof(InetAddress)); }
InetAddress(const struct sockaddr_storage &ss) { *this = ss; }
InetAddress(const struct sockaddr_storage *ss) { *this = ss; }
InetAddress(const struct sockaddr &sa) { *this = sa; }
InetAddress(const struct sockaddr *sa) { *this = sa; }
InetAddress(const struct sockaddr_in &sa) { *this = sa; }
InetAddress(const struct sockaddr_in *sa) { *this = sa; }
InetAddress(const struct sockaddr_in6 &sa) { *this = sa; }
InetAddress(const struct sockaddr_in6 *sa) { *this = sa; }
InetAddress(const void *ipBytes,unsigned int ipLen,unsigned int port) { this->set(ipBytes,ipLen,port); }
InetAddress(const uint32_t ipv4,unsigned int port) { this->set(&ipv4,4,port); }
InetAddress(const char *ipSlashPort) { this->fromString(ipSlashPort); }
inline InetAddress &operator=(const InetAddress &a)
{
if (&a != this)
memcpy(this,&a,sizeof(InetAddress));
return *this;
}
inline InetAddress &operator=(const InetAddress *a)
{
if (a != this)
memcpy(this,a,sizeof(InetAddress));
return *this;
}
inline InetAddress &operator=(const struct sockaddr_storage &ss)
{
if (reinterpret_cast(&ss) != this)
memcpy(this,&ss,sizeof(InetAddress));
return *this;
}
inline InetAddress &operator=(const struct sockaddr_storage *ss)
{
if (reinterpret_cast(ss) != this)
memcpy(this,ss,sizeof(InetAddress));
return *this;
}
inline InetAddress &operator=(const struct sockaddr_in &sa)
{
if (reinterpret_cast(&sa) != this) {
memset(this,0,sizeof(InetAddress));
memcpy(this,&sa,sizeof(struct sockaddr_in));
}
return *this;
}
inline InetAddress &operator=(const struct sockaddr_in *sa)
{
if (reinterpret_cast(sa) != this) {
memset(this,0,sizeof(InetAddress));
memcpy(this,sa,sizeof(struct sockaddr_in));
}
return *this;
}
inline InetAddress &operator=(const struct sockaddr_in6 &sa)
{
if (reinterpret_cast(&sa) != this) {
memset(this,0,sizeof(InetAddress));
memcpy(this,&sa,sizeof(struct sockaddr_in6));
}
return *this;
}
inline InetAddress &operator=(const struct sockaddr_in6 *sa)
{
if (reinterpret_cast(sa) != this) {
memset(this,0,sizeof(InetAddress));
memcpy(this,sa,sizeof(struct sockaddr_in6));
}
return *this;
}
inline InetAddress &operator=(const struct sockaddr &sa)
{
if (reinterpret_cast(&sa) != this) {
memset(this,0,sizeof(InetAddress));
switch(sa.sa_family) {
case AF_INET:
memcpy(this,&sa,sizeof(struct sockaddr_in));
break;
case AF_INET6:
memcpy(this,&sa,sizeof(struct sockaddr_in6));
break;
}
}
return *this;
}
inline InetAddress &operator=(const struct sockaddr *sa)
{
if (reinterpret_cast(sa) != this) {
memset(this,0,sizeof(InetAddress));
switch(sa->sa_family) {
case AF_INET:
memcpy(this,sa,sizeof(struct sockaddr_in));
break;
case AF_INET6:
memcpy(this,sa,sizeof(struct sockaddr_in6));
break;
}
}
return *this;
}
/**
* @return IP scope classification (e.g. loopback, link-local, private, global)
*/
IpScope ipScope() const;
/**
* Set from a raw IP and port number
*
* @param ipBytes Bytes of IP address in network byte order
* @param ipLen Length of IP address: 4 or 16
* @param port Port number or 0 for none
*/
void set(const void *ipBytes,unsigned int ipLen,unsigned int port);
/**
* Set the port component
*
* @param port Port, 0 to 65535
*/
inline void setPort(unsigned int port)
{
switch(ss_family) {
case AF_INET:
reinterpret_cast(this)->sin_port = Utils::hton((uint16_t)port);
break;
case AF_INET6:
reinterpret_cast(this)->sin6_port = Utils::hton((uint16_t)port);
break;
}
}
/**
* @return True if this network/netmask route describes a default route (e.g. 0.0.0.0/0)
*/
inline bool isDefaultRoute() const
{
switch(ss_family) {
case AF_INET:
return ( (reinterpret_cast(this)->sin_addr.s_addr == 0) && (reinterpret_cast(this)->sin_port == 0) );
case AF_INET6:
const uint8_t *ipb = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr);
for(int i=0;i<16;++i) {
if (ipb[i])
return false;
}
return (reinterpret_cast(this)->sin6_port == 0);
}
return false;
}
/**
* @return ASCII IP/port format representation
*/
char *toString(char buf[64]) const;
/**
* @return IP portion only, in ASCII string format
*/
char *toIpString(char buf[64]) const;
/**
* @param ipSlashPort IP/port (port is optional, will be 0 if not included)
* @return True if address appeared to be valid
*/
bool fromString(const char *ipSlashPort);
/**
* @return Port or 0 if no port component defined
*/
inline unsigned int port() const
{
switch(ss_family) {
case AF_INET: return Utils::ntoh((uint16_t)(reinterpret_cast(this)->sin_port));
case AF_INET6: return Utils::ntoh((uint16_t)(reinterpret_cast(this)->sin6_port));
default: return 0;
}
}
/**
* Alias for port()
*
* This just aliases port() to make code more readable when netmask bits
* are stuffed there, as they are in Network, EthernetTap, and a few other
* spots.
*
* @return Netmask bits
*/
inline unsigned int netmaskBits() const { return port(); }
/**
* @return True if netmask bits is valid for the address type
*/
inline bool netmaskBitsValid() const
{
const unsigned int n = port();
switch(ss_family) {
case AF_INET: return (n <= 32);
case AF_INET6: return (n <= 128);
}
return false;
}
/**
* Alias for port()
*
* This just aliases port() because for gateways we use this field to
* store the gateway metric.
*
* @return Gateway metric
*/
inline unsigned int metric() const { return port(); }
/**
* Construct a full netmask as an InetAddress
*
* @return Netmask such as 255.255.255.0 if this address is /24 (port field will be unchanged)
*/
InetAddress netmask() const;
/**
* Constructs a broadcast address from a network/netmask address
*
* This is only valid for IPv4 and will return a NULL InetAddress for other
* address families.
*
* @return Broadcast address (only IP portion is meaningful)
*/
InetAddress broadcast() const;
/**
* Return the network -- a.k.a. the IP ANDed with the netmask
*
* @return Network e.g. 10.0.1.0/24 from 10.0.1.200/24
*/
InetAddress network() const;
/**
* Test whether this IPv6 prefix matches the prefix of a given IPv6 address
*
* @param addr Address to check
* @return True if this IPv6 prefix matches the prefix of a given IPv6 address
*/
bool isEqualPrefix(const InetAddress &addr) const;
/**
* Test whether this IP/netmask contains this address
*
* @param addr Address to check
* @return True if this IP/netmask (route) contains this address
*/
bool containsAddress(const InetAddress &addr) const;
/**
* @return True if this is an IPv4 address
*/
inline bool isV4() const { return (ss_family == AF_INET); }
/**
* @return True if this is an IPv6 address
*/
inline bool isV6() const { return (ss_family == AF_INET6); }
/**
* @return pointer to raw address bytes or NULL if not available
*/
inline const void *rawIpData() const
{
switch(ss_family) {
case AF_INET: return (const void *)&(reinterpret_cast(this)->sin_addr.s_addr);
case AF_INET6: return (const void *)(reinterpret_cast(this)->sin6_addr.s6_addr);
default: return 0;
}
}
/**
* @return InetAddress containing only the IP portion of this address and a zero port, or NULL if not IPv4 or IPv6
*/
inline InetAddress ipOnly() const
{
InetAddress r;
switch(ss_family) {
case AF_INET:
r.ss_family = AF_INET;
reinterpret_cast(&r)->sin_addr.s_addr = reinterpret_cast(this)->sin_addr.s_addr;
break;
case AF_INET6:
r.ss_family = AF_INET6;
memcpy(reinterpret_cast(&r)->sin6_addr.s6_addr,reinterpret_cast(this)->sin6_addr.s6_addr,16);
break;
}
return r;
}
/**
* Performs an IP-only comparison or, if that is impossible, a memcmp()
*
* @param a InetAddress to compare again
* @return True if only IP portions are equal (false for non-IP or null addresses)
*/
inline bool ipsEqual(const InetAddress &a) const
{
if (ss_family == a.ss_family) {
if (ss_family == AF_INET)
return (reinterpret_cast(this)->sin_addr.s_addr == reinterpret_cast(&a)->sin_addr.s_addr);
if (ss_family == AF_INET6)
return (memcmp(reinterpret_cast(this)->sin6_addr.s6_addr,reinterpret_cast(&a)->sin6_addr.s6_addr,16) == 0);
return (memcmp(this,&a,sizeof(InetAddress)) == 0);
}
return false;
}
/**
* Performs an IP-only comparison or, if that is impossible, a memcmp()
*
* This version compares only the first 64 bits of IPv6 addresses.
*
* @param a InetAddress to compare again
* @return True if only IP portions are equal (false for non-IP or null addresses)
*/
inline bool ipsEqual2(const InetAddress &a) const
{
if (ss_family == a.ss_family) {
if (ss_family == AF_INET)
return (reinterpret_cast(this)->sin_addr.s_addr == reinterpret_cast(&a)->sin_addr.s_addr);
if (ss_family == AF_INET6)
return (memcmp(reinterpret_cast(this)->sin6_addr.s6_addr,reinterpret_cast(&a)->sin6_addr.s6_addr,8) == 0);
return (memcmp(this,&a,sizeof(InetAddress)) == 0);
}
return false;
}
inline unsigned long hashCode() const
{
if (ss_family == AF_INET) {
return ((unsigned long)reinterpret_cast(this)->sin_addr.s_addr + (unsigned long)reinterpret_cast(this)->sin_port);
} else if (ss_family == AF_INET6) {
unsigned long tmp = reinterpret_cast(this)->sin6_port;
const uint8_t *a = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr);
for(long i=0;i<16;++i)
reinterpret_cast(&tmp)[i % sizeof(tmp)] ^= a[i];
return tmp;
} else {
unsigned long tmp = reinterpret_cast(this)->sin6_port;
const uint8_t *a = reinterpret_cast(this);
for(long i=0;i<(long)sizeof(InetAddress);++i)
reinterpret_cast(&tmp)[i % sizeof(tmp)] ^= a[i];
return tmp;
}
}
/**
* Set to null/zero
*/
inline void zero() { memset(this,0,sizeof(InetAddress)); }
/**
* Check whether this is a network/route rather than an IP assignment
*
* A network is an IP/netmask where everything after the netmask is
* zero e.g. 10.0.0.0/8.
*
* @return True if everything after netmask bits is zero
*/
bool isNetwork() const;
/**
* @return 14-bit (0-16383) hash of this IP's first 24 or 48 bits (for V4 or V6) for rate limiting code, or 0 if non-IP
*/
inline unsigned long rateGateHash() const
{
unsigned long h = 0;
switch(ss_family) {
case AF_INET:
h = (Utils::ntoh((uint32_t)reinterpret_cast(this)->sin_addr.s_addr) & 0xffffff00) >> 8;
h ^= (h >> 14);
break;
case AF_INET6: {
const uint8_t *ip = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr);
h = ((unsigned long)ip[0]); h <<= 1;
h += ((unsigned long)ip[1]); h <<= 1;
h += ((unsigned long)ip[2]); h <<= 1;
h += ((unsigned long)ip[3]); h <<= 1;
h += ((unsigned long)ip[4]); h <<= 1;
h += ((unsigned long)ip[5]);
} break;
}
return (h & 0x3fff);
}
/**
* @return True if address family is non-zero
*/
inline operator bool() const { return (ss_family != 0); }
template
inline void serialize(Buffer &b) const
{
// This is used in the protocol and must be the same as describe in places
// like VERB_HELLO in Packet.hpp.
switch(ss_family) {
case AF_INET:
b.append((uint8_t)0x04);
b.append(&(reinterpret_cast(this)->sin_addr.s_addr),4);
b.append((uint16_t)port()); // just in case sin_port != uint16_t
return;
case AF_INET6:
b.append((uint8_t)0x06);
b.append(reinterpret_cast(this)->sin6_addr.s6_addr,16);
b.append((uint16_t)port()); // just in case sin_port != uint16_t
return;
default:
b.append((uint8_t)0);
return;
}
}
template
inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0)
{
memset(this,0,sizeof(InetAddress));
unsigned int p = startAt;
switch(b[p++]) {
case 0:
return 1;
case 0x01:
// TODO: Ethernet address (but accept for forward compatibility)
return 7;
case 0x02:
// TODO: Bluetooth address (but accept for forward compatibility)
return 7;
case 0x03:
// TODO: Other address types (but accept for forward compatibility)
// These could be extended/optional things like AF_UNIX, LTE Direct, shared memory, etc.
return (unsigned int)(b.template at(p) + 3); // other addresses begin with 16-bit non-inclusive length
case 0x04:
ss_family = AF_INET;
memcpy(&(reinterpret_cast(this)->sin_addr.s_addr),b.field(p,4),4); p += 4;
reinterpret_cast(this)->sin_port = Utils::hton(b.template at(p)); p += 2;
break;
case 0x06:
ss_family = AF_INET6;
memcpy(reinterpret_cast(this)->sin6_addr.s6_addr,b.field(p,16),16); p += 16;
reinterpret_cast(this)->sin_port = Utils::hton(b.template at(p)); p += 2;
break;
default:
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_BAD_ENCODING;
}
return (p - startAt);
}
bool operator==(const InetAddress &a) const;
bool operator<(const InetAddress &a) const;
inline bool operator!=(const InetAddress &a) const { return !(*this == a); }
inline bool operator>(const InetAddress &a) const { return (a < *this); }
inline bool operator<=(const InetAddress &a) const { return !(a < *this); }
inline bool operator>=(const InetAddress &a) const { return !(*this < a); }
/**
* @param mac MAC address seed
* @return IPv6 link-local address
*/
static InetAddress makeIpv6LinkLocal(const MAC &mac);
/**
* Compute private IPv6 unicast address from network ID and ZeroTier address
*
* This generates a private unicast IPv6 address that is mostly compliant
* with the letter of RFC4193 and certainly compliant in spirit.
*
* RFC4193 specifies a format of:
*
* | 7 bits |1| 40 bits | 16 bits | 64 bits |
* | Prefix |L| Global ID | Subnet ID | Interface ID |
*
* The 'L' bit is set to 1, yielding an address beginning with 0xfd. Then
* the network ID is filled into the global ID, subnet ID, and first byte
* of the "interface ID" field. Since the first 40 bits of the network ID
* is the unique ZeroTier address of its controller, this makes a very
* good random global ID. Since network IDs have 24 more bits, we let it
* overflow into the interface ID.
*
* After that we pad with two bytes: 0x99, 0x93, namely the default ZeroTier
* port in hex.
*
* Finally we fill the remaining 40 bits of the interface ID field with
* the 40-bit unique ZeroTier device ID of the network member.
*
* This yields a valid RFC4193 address with a random global ID, a
* meaningful subnet ID, and a unique interface ID, all mappable back onto
* ZeroTier space.
*
* This in turn could allow us, on networks numbered this way, to emulate
* IPv6 NDP and eliminate all multicast. This could be beneficial for
* small devices and huge networks, e.g. IoT applications.
*
* The returned address is given an odd prefix length of /88, since within
* a given network only the last 40 bits (device ID) are variable. This
* is a bit unusual but as far as we know should not cause any problems with
* any non-braindead IPv6 stack.
*
* @param nwid 64-bit network ID
* @param zeroTierAddress 40-bit device address (in least significant 40 bits, highest 24 bits ignored)
* @return IPv6 private unicast address with /88 netmask
*/
static InetAddress makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress);
/**
* Compute a private IPv6 "6plane" unicast address from network ID and ZeroTier address
*/
static InetAddress makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress);
};
} // namespace ZeroTier
#endif