/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2012-2013 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "Topology.hpp" #include "PacketDecoder.hpp" #include "Switch.hpp" #include "Peer.hpp" #include "NodeConfig.hpp" #include "Filter.hpp" #include "Service.hpp" /* * The big picture: * * tryDecode() gets called for a given fully-assembled packet until it returns * true or the packet's time to live has been exceeded. The state machine must * therefore be re-entrant if it ever returns false. Take care here! * * Stylistic note: * * There's a lot of unnecessary if nesting. It's mostly to allow TRACE to * print informative messages on every possible reason something gets * rejected or fails. */ namespace ZeroTier { bool PacketDecoder::tryDecode(const RuntimeEnvironment *_r) throw(std::out_of_range,std::runtime_error) { if ((!encrypted())&&(verb() == Packet::VERB_HELLO)) { // Unencrypted HELLOs are handled here since they are used to // populate our identity cache in the first place. Thus we might get // a HELLO for someone for whom we don't have a Peer record. TRACE("HELLO from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str()); return _doHELLO(_r); } SharedPtr peer = _r->topology->getPeer(source()); if (peer) { // Resume saved state? if (_step == DECODE_WAITING_FOR_MULTICAST_FRAME_ORIGINAL_SENDER_LOOKUP) { // In this state we have already authenticated and decrypted the // packet and are waiting for the lookup of the original sender // for a multicast frame. So check to see if we've got it. return _doMULTICAST_FRAME(_r,peer); } // No saved state? Verify MAC before we proceed. if (!hmacVerify(peer->macKey())) { TRACE("dropped packet from %s(%s), HMAC authentication failed (size: %u)",source().toString().c_str(),_remoteAddress.toString().c_str(),size()); return true; } // If MAC authentication passed, decrypt and uncompress if (encrypted()) { decrypt(peer->cryptKey()); } else { // Unencrypted is tolerated in case we want to run this on // devices where squeezing out cycles matters. HMAC is // what's really important. But log it in debug to catch any // packets being mistakenly sent in the clear. TRACE("ODD: %s from %s(%s) wasn't encrypted",Packet::verbString(verb()),source().toString().c_str(),_remoteAddress.toString().c_str()); } if (!uncompress()) { TRACE("dropped packet from %s(%s), compressed data invalid",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } Packet::Verb v = verb(); // Once a packet is determined to be basically valid, it can be used // to passively learn a new network path to the sending peer. It // also results in statistics updates. peer->onReceive(_r,_localPort,_remoteAddress,hops(),v,Utils::now()); switch(v) { case Packet::VERB_NOP: TRACE("NOP from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str()); return true; case Packet::VERB_HELLO: return _doHELLO(_r); // encrypted HELLO is technically allowed, but kind of pointless... :) case Packet::VERB_ERROR: return _doERROR(_r,peer); case Packet::VERB_OK: return _doOK(_r,peer); case Packet::VERB_WHOIS: return _doWHOIS(_r,peer); case Packet::VERB_RENDEZVOUS: return _doRENDEZVOUS(_r,peer); case Packet::VERB_FRAME: return _doFRAME(_r,peer); case Packet::VERB_MULTICAST_LIKE: return _doMULTICAST_LIKE(_r,peer); case Packet::VERB_MULTICAST_FRAME: return _doMULTICAST_FRAME(_r,peer); case Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE: return _doNETWORK_MEMBERSHIP_CERTIFICATE(_r,peer); case Packet::VERB_NETWORK_CONFIG_REQUEST: return _doNETWORK_CONFIG_REQUEST(_r,peer); case Packet::VERB_NETWORK_CONFIG_REFRESH: return _doNETWORK_CONFIG_REFRESH(_r,peer); default: // This might be something from a new or old version of the protocol. // Technically it passed HMAC so the packet is still valid, but we // ignore it. TRACE("ignored unrecognized verb %.2x from %s(%s)",(unsigned int)v,source().toString().c_str(),_remoteAddress.toString().c_str()); return true; } } else { _step = DECODE_WAITING_FOR_SENDER_LOOKUP; // should already be this... _r->sw->requestWhois(source()); return false; } } void PacketDecoder::_CBaddPeerFromHello(void *arg,const SharedPtr &p,Topology::PeerVerifyResult result) { _CBaddPeerFromHello_Data *req = (_CBaddPeerFromHello_Data *)arg; const RuntimeEnvironment *_r = req->renv; try { switch(result) { case Topology::PEER_VERIFY_ACCEPTED_NEW: case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE: case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS: { _r->sw->doAnythingWaitingForPeer(p); Packet outp(req->source,_r->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_HELLO); outp.append(req->helloPacketId); outp.append(req->helloTimestamp); outp.encrypt(p->cryptKey()); outp.hmacSet(p->macKey()); _r->demarc->send(req->localPort,req->remoteAddress,outp.data(),outp.size(),-1); } break; case Topology::PEER_VERIFY_REJECTED_INVALID_IDENTITY: { Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_HELLO); outp.append(req->helloPacketId); outp.append((unsigned char)Packet::ERROR_IDENTITY_INVALID); outp.encrypt(p->cryptKey()); outp.hmacSet(p->macKey()); _r->demarc->send(req->localPort,req->remoteAddress,outp.data(),outp.size(),-1); } break; case Topology::PEER_VERIFY_REJECTED_DUPLICATE: case Topology::PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED: { Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_HELLO); outp.append(req->helloPacketId); outp.append((unsigned char)Packet::ERROR_IDENTITY_COLLISION); outp.encrypt(p->cryptKey()); outp.hmacSet(p->macKey()); _r->demarc->send(req->localPort,req->remoteAddress,outp.data(),outp.size(),-1); } break; } } catch ( ... ) { TRACE("unexpected exception in addPeer() result callback for peer received via HELLO"); } delete req; } void PacketDecoder::_CBaddPeerFromWhois(void *arg,const SharedPtr &p,Topology::PeerVerifyResult result) { const RuntimeEnvironment *_r = (const RuntimeEnvironment *)arg; try { switch(result) { case Topology::PEER_VERIFY_ACCEPTED_NEW: case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE: case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS: _r->sw->doAnythingWaitingForPeer(p); break; default: break; } } catch ( ... ) { TRACE("unexpected exception in addPeer() result callback for peer received via OK(WHOIS)"); } } bool PacketDecoder::_doERROR(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { #ifdef ZT_TRACE Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB]; Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE]; TRACE("ERROR %s from %s(%s) in-re %s",Packet::errorString(errorCode),source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb)); #endif // TODO (sorta): // The fact is that the protocol works fine without error handling. // The only error that really needs to be handled here is duplicate // identity collision, which if it comes from a supernode should cause // us to restart and regenerate a new identity. } catch (std::exception &ex) { TRACE("dropped ERROR from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped ERROR from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doHELLO(const RuntimeEnvironment *_r) { try { //unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION]; unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION]; unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION]; unsigned int vRevision = at(ZT_PROTO_VERB_HELLO_IDX_REVISION); uint64_t timestamp = at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP); Identity id(*this,ZT_PROTO_VERB_HELLO_IDX_IDENTITY); // Create a new candidate peer that we might decide to add to our // database. We create it now since we want its keys to send replies // even in the error case, and the code for keying is in Peer. SharedPtr candidate(new Peer(_r->identity,id)); candidate->setPathAddress(_remoteAddress,false); // The initial sniff test... is the identity valid, and is it // the sender's identity? if ((id.address().isReserved())||(id.address() != source())) { #ifdef ZT_TRACE if (id.address().isReserved()) { TRACE("rejected HELLO from %s(%s): identity has reserved address",source().toString().c_str(),_remoteAddress.toString().c_str()); } else { TRACE("rejected HELLO from %s(%s): identity is not for sender of packet (HELLO is a self-announcement)",source().toString().c_str(),_remoteAddress.toString().c_str()); } #endif Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_HELLO); outp.append(packetId()); outp.append((unsigned char)((id.address().isReserved()) ? Packet::ERROR_IDENTITY_INVALID : Packet::ERROR_INVALID_REQUEST)); outp.encrypt(candidate->cryptKey()); outp.hmacSet(candidate->macKey()); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); return true; } // Is this a HELLO for a peer we already know? If so just update its // packet receive stats and send an OK. SharedPtr existingPeer(_r->topology->getPeer(id.address())); if ((existingPeer)&&(existingPeer->identity() == id)) { existingPeer->onReceive(_r,_localPort,_remoteAddress,hops(),Packet::VERB_HELLO,Utils::now()); existingPeer->setRemoteVersion(vMajor,vMinor,vRevision); Packet outp(source(),_r->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_HELLO); outp.append(packetId()); outp.append(timestamp); outp.encrypt(existingPeer->cryptKey()); outp.hmacSet(existingPeer->macKey()); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); return true; } // Otherwise we call addPeer() and set up a callback to handle the verdict. // Topology evaluates the peer in the background, possibly doing the entire // expensive analysis before determining whether to add it to the database. _CBaddPeerFromHello_Data *arg = new _CBaddPeerFromHello_Data; arg->renv = _r; arg->source = source(); arg->remoteAddress = _remoteAddress; arg->localPort = _localPort; arg->vMajor = vMajor; arg->vMinor = vMinor; arg->vRevision = vRevision; arg->helloPacketId = packetId(); arg->helloTimestamp = timestamp; _r->topology->addPeer(candidate,&PacketDecoder::_CBaddPeerFromHello,arg); } catch (std::exception &ex) { TRACE("dropped HELLO from %s(%s): %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped HELLO from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doOK(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB]; switch(inReVerb) { case Packet::VERB_HELLO: { // OK from HELLO permits computation of latency. unsigned int latency = std::min((unsigned int)(Utils::now() - at(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP)),(unsigned int)0xffff); TRACE("%s(%s): OK(HELLO), latency: %u",source().toString().c_str(),_remoteAddress.toString().c_str(),latency); peer->setLatency(_remoteAddress,latency); } break; case Packet::VERB_WHOIS: { TRACE("%s(%s): OK(%s)",source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb)); if (_r->topology->isSupernode(source())) { // Right now, only supernodes are queried for WHOIS so we only // accept OK(WHOIS) from supernodes. Otherwise peers could // potentially cache-poison. A more elegant but memory-intensive // solution would be to remember packet IDs of WHOIS requests. _r->topology->addPeer(SharedPtr(new Peer(_r->identity,Identity(*this,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY))),&PacketDecoder::_CBaddPeerFromWhois,const_cast((const void *)_r)); } } break; case Packet::VERB_NETWORK_CONFIG_REQUEST: { SharedPtr nw(_r->nc->network(at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_NETWORK_ID))); if ((nw)&&(nw->controller() == source())) { // Only accept OK(NETWORK_CONFIG_REQUEST) from masters for // networks we have. unsigned int dictlen = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT_LEN); std::string dict((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT,dictlen),dictlen); if (dict.length()) { Network::Config netconf(dict); if ((netconf.networkId() == nw->id())&&(netconf.peerAddress() == _r->identity.address())) { // sanity check LOG("got network configuration for network %.16llx from %s",(unsigned long long)nw->id(),source().toString().c_str()); nw->setConfiguration(netconf); } } } } break; default: //TRACE("%s(%s): OK(%s)",source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb)); break; } } catch (std::exception &ex) { TRACE("dropped OK from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped OK from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doWHOIS(const RuntimeEnvironment *_r,const SharedPtr &peer) { if (payloadLength() == ZT_ADDRESS_LENGTH) { SharedPtr p(_r->topology->getPeer(Address(payload(),ZT_ADDRESS_LENGTH))); if (p) { Packet outp(source(),_r->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_WHOIS); outp.append(packetId()); p->identity().serialize(outp,false); outp.encrypt(peer->cryptKey()); outp.hmacSet(peer->macKey()); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); TRACE("sent WHOIS response to %s for %s",source().toString().c_str(),Address(payload(),ZT_ADDRESS_LENGTH).toString().c_str()); } else { Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_WHOIS); outp.append(packetId()); outp.append((unsigned char)Packet::ERROR_NOT_FOUND); outp.append(payload(),ZT_ADDRESS_LENGTH); outp.encrypt(peer->cryptKey()); outp.hmacSet(peer->macKey()); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); TRACE("sent WHOIS ERROR to %s for %s (not found)",source().toString().c_str(),Address(payload(),ZT_ADDRESS_LENGTH).toString().c_str()); } } else { TRACE("dropped WHOIS from %s(%s): missing or invalid address",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doRENDEZVOUS(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { /* * At the moment, we only obey RENDEZVOUS if it comes from a designated * supernode. If relay offloading is implemented to scale the net, this * will need reconsideration. * * The reason is that RENDEZVOUS could technically be used to cause a * peer to send a weird encrypted UDP packet to an arbitrary IP:port. * The sender of RENDEZVOUS has no control over the content of this * packet, but it's still maybe something we want to not allow just * anyone to order due to possible DDOS or network forensic implications. * So if we diversify relays, we'll need some way of deciding whether the * sender is someone we should trust with a RENDEZVOUS hint. Or maybe * we just need rate limiting to prevent DDOS and amplification attacks. */ if (_r->topology->isSupernode(source())) { Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); SharedPtr withPeer(_r->topology->getPeer(with)); if (withPeer) { unsigned int port = at(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT); unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN]; if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) { InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port); TRACE("RENDEZVOUS from %s says %s might be at %s, starting NAT-t",source().toString().c_str(),with.toString().c_str(),atAddr.toString().c_str()); _r->sw->contact(withPeer,atAddr); } else { TRACE("dropped corrupt RENDEZVOUS from %s(%s) (bad address or port)",source().toString().c_str(),_remoteAddress.toString().c_str()); } } else { TRACE("ignored RENDEZVOUS from %s(%s) to meet unknown peer %s",source().toString().c_str(),_remoteAddress.toString().c_str(),with.toString().c_str()); } } else { TRACE("ignored RENDEZVOUS from %s(%s): source not supernode",source().toString().c_str(),_remoteAddress.toString().c_str()); } } catch (std::exception &ex) { TRACE("dropped RENDEZVOUS from %s(%s): %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped RENDEZVOUS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doFRAME(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { SharedPtr network(_r->nc->network(at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID))); if (network) { if (network->isAllowed(source())) { unsigned int etherType = at(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE); if ((etherType != ZT_ETHERTYPE_ARP)&&(etherType != ZT_ETHERTYPE_IPV4)&&(etherType != ZT_ETHERTYPE_IPV6)) { TRACE("dropped FRAME from %s: unsupported ethertype",source().toString().c_str()); } else if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) { network->tap().put(source().toMAC(),network->tap().mac(),etherType,data() + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD,size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD); } } else { TRACE("dropped FRAME from %s(%s): not a member of closed network %llu",source().toString().c_str(),_remoteAddress.toString().c_str(),network->id()); } } else { TRACE("dropped FRAME from %s(%s): network %llu unknown",source().toString().c_str(),_remoteAddress.toString().c_str(),at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID)); } } catch (std::exception &ex) { TRACE("dropped FRAME from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped FRAME from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doMULTICAST_LIKE(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; unsigned int numAccepted = 0; uint64_t now = Utils::now(); // Iterate through 18-byte network,MAC,ADI tuples: while ((ptr + 18) <= size()) { uint64_t nwid = at(ptr); ptr += 8; SharedPtr network(_r->nc->network(nwid)); if ((network)&&(network->isAllowed(source()))) { MAC mac(field(ptr,6)); ptr += 6; uint32_t adi = at(ptr); ptr += 4; //TRACE("peer %s likes multicast group %s:%.8lx on network %llu",source().toString().c_str(),mac.toString().c_str(),(unsigned long)adi,nwid); _r->multicaster->likesMulticastGroup(nwid,MulticastGroup(mac,adi),source(),now); ++numAccepted; } else { ptr += 10; TRACE("ignored MULTICAST_LIKE from %s(%s): network %.16llx unknown, or sender is not a member of network",source().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned long long)nwid); } } Packet outp(source(),_r->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_MULTICAST_LIKE); outp.append(packetId()); outp.append((uint16_t)numAccepted); outp.encrypt(peer->cryptKey()); outp.hmacSet(peer->macKey()); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); } catch (std::exception &ex) { TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doMULTICAST_FRAME(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { SharedPtr network(_r->nc->network(at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID))); if ((network)&&(network->isAllowed(source()))) { Address originalSubmitterAddress(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SUBMITTER_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); MAC fromMac(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SOURCE_MAC,6)); MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DESTINATION_MAC,6)),at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI)); unsigned int hops = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOP_COUNT]; unsigned int etherType = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE); unsigned int datalen = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD_LENGTH); unsigned int signaturelen = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SIGNATURE_LENGTH); unsigned char *dataAndSignature = field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,datalen + signaturelen); uint64_t mccrc = Multicaster::computeMulticastDedupCrc(network->id(),fromMac,mg,etherType,dataAndSignature,datalen); uint64_t now = Utils::now(); bool isDuplicate = _r->multicaster->checkDuplicate(mccrc,now); if (originalSubmitterAddress == _r->identity.address()) { // Technically should not happen, since the original submitter is // excluded from consideration as a propagation recipient. TRACE("dropped boomerang MULTICAST_FRAME received from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str()); } else if ((!isDuplicate)||(_r->topology->amSupernode())) { // // If I am a supernode, I will repeatedly propagate duplicates. That's // because supernodes are used to bridge sparse multicast groups. Non- // supernodes will ignore duplicates completely. // // TODO: supernodes should keep a local bloom filter too and OR it with // the bloom from the packet in order to pick different recipients each // time a multicast returns to them for repropagation. // SharedPtr originalSubmitter(_r->topology->getPeer(originalSubmitterAddress)); if (!originalSubmitter) { TRACE("requesting WHOIS on original multicast frame submitter %s",originalSubmitterAddress.toString().c_str()); _r->sw->requestWhois(originalSubmitterAddress); _step = DECODE_WAITING_FOR_MULTICAST_FRAME_ORIGINAL_SENDER_LOOKUP; return false; // try again if/when we get OK(WHOIS) } else if (Multicaster::verifyMulticastPacket(originalSubmitter->identity(),network->id(),fromMac,mg,etherType,dataAndSignature,datalen,dataAndSignature + datalen,signaturelen)) { // In checking the multicast rate, we don't re-check if this is // a duplicate. That's because if isDuplicate is true it means // we're a supernode and it's a second pass relay. if ((isDuplicate)||(network->multicastRateGate(originalSubmitter->address(),datalen))) { _r->multicaster->addToDedupHistory(mccrc,now); // Even if we are a supernode, we still don't repeatedly inject // duplicates into our own tap. if (!isDuplicate) network->tap().put(fromMac,mg.mac(),etherType,dataAndSignature,datalen); if (++hops < ZT_MULTICAST_PROPAGATION_DEPTH) { Address upstream(source()); // save this since we mangle it Multicaster::MulticastBloomFilter bloom(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM_FILTER,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE_BYTES)); SharedPtr propPeers[ZT_MULTICAST_PROPAGATION_BREADTH]; unsigned int np = _r->multicaster->pickNextPropagationPeers( *(_r->prng), *(_r->topology), network->id(), mg, originalSubmitterAddress, upstream, bloom, ZT_MULTICAST_PROPAGATION_BREADTH, propPeers, now); // In a bit of a hack, we re-use this packet to repeat it // to our multicast propagation recipients. Afterwords we // return true just to be sure this is the end of this // packet's life cycle, since it is now mangled. setSource(_r->identity.address()); (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOP_COUNT] = hops; memcpy(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM_FILTER,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE_BYTES),bloom.data(),ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE_BYTES); compress(); for(unsigned int i=0;i %s",originalSubmitterAddress.toString().c_str(),upstream.toString().c_str(),propPeers[i]->address().toString().c_str()); // Re-use this packet to re-send multicast frame to everyone // downstream from us. newInitializationVector(); setDestination(propPeers[i]->address()); _r->sw->send(*this,true); } // Return here just to be safe, since this packet's state is no // longer valid. return true; } else { //TRACE("terminating MULTICAST_FRAME propagation from %s(%s): max depth reached",source().toString().c_str(),_remoteAddress.toString().c_str()); } } else { LOG("dropped MULTICAST_FRAME from original sender %s: rate limit overrun",originalSubmitter->address().toString().c_str()); } } else { TRACE("rejected MULTICAST_FRAME forwarded by %s(%s): failed signature check (falsely claims origin %s)",source().toString().c_str(),_remoteAddress.toString().c_str(),originalSubmitterAddress.toString().c_str()); } } else { TRACE("dropped duplicate MULTICAST_FRAME from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str()); } } else { TRACE("dropped MULTICAST_FRAME from %s(%s): network %.16llx unknown or sender not allowed",source().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned long long)network->id()); } } catch (std::exception &ex) { TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doNETWORK_MEMBERSHIP_CERTIFICATE(const RuntimeEnvironment *_r,const SharedPtr &peer) { // TODO: not implemented yet, will be needed for private networks. return true; } bool PacketDecoder::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *_r,const SharedPtr &peer) { char tmp[128]; try { uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID); #ifndef __WINDOWS__ if (_r->netconfService) { unsigned int dictLen = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN); Dictionary request; if (dictLen) request["meta"] = std::string((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,dictLen),dictLen); request["type"] = "netconf-request"; request["peerId"] = peer->identity().toString(false); sprintf(tmp,"%llx",(unsigned long long)nwid); request["nwid"] = tmp; sprintf(tmp,"%llx",(unsigned long long)packetId()); request["requestId"] = tmp; //TRACE("to netconf:\n%s",request.toString().c_str()); _r->netconfService->send(request); } else { #endif // !__WINDOWS__ Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(packetId()); outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION); outp.append(nwid); outp.encrypt(peer->cryptKey()); outp.hmacSet(peer->macKey()); _r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1); #ifndef __WINDOWS__ } #endif // !__WINDOWS__ } catch (std::exception &exc) { TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),exc.what()); } catch ( ... ) { TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } bool PacketDecoder::_doNETWORK_CONFIG_REFRESH(const RuntimeEnvironment *_r,const SharedPtr &peer) { try { uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REFRESH_IDX_NETWORK_ID); SharedPtr nw(_r->nc->network(nwid)); if ((nw)&&(source() == nw->controller())) // only respond to requests from controller nw->requestConfiguration(); } catch (std::exception &exc) { TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),exc.what()); } catch ( ... ) { TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str()); } return true; } } // namespace ZeroTier