/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #include "../version.h" #include "Constants.hpp" #include "Peer.hpp" #include "Node.hpp" #include "Switch.hpp" #include "Network.hpp" #include "SelfAwareness.hpp" #include "Packet.hpp" namespace ZeroTier { Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) : RR(renv), _lastWroteState(0), _lastReceivedStateTimestamp(0), _lastReceive(0), _lastNontrivialReceive(0), _lastTriedMemorizedPath(0), _lastDirectPathPushSent(0), _lastDirectPathPushReceive(0), _lastCredentialRequestSent(0), _lastWhoisRequestReceived(0), _lastEchoRequestReceived(0), _lastComRequestReceived(0), _lastComRequestSent(0), _lastCredentialsReceived(0), _lastTrustEstablishedPacketReceived(0), _vProto(0), _vMajor(0), _vMinor(0), _vRevision(0), _id(peerIdentity), _latency(0), _directPathPushCutoffCount(0), _credentialsCutoffCount(0) { if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH)) throw std::runtime_error("new peer identity key agreement failed"); } void Peer::received( void *tPtr, const SharedPtr &path, const unsigned int hops, const uint64_t packetId, const Packet::Verb verb, const uint64_t inRePacketId, const Packet::Verb inReVerb, const bool trustEstablished) { const uint64_t now = RR->node->now(); /* #ifdef ZT_ENABLE_CLUSTER bool isClusterSuboptimalPath = false; if ((RR->cluster)&&(hops == 0)) { // Note: findBetterEndpoint() is first since we still want to check // for a better endpoint even if we don't actually send a redirect. InetAddress redirectTo; if ( (verb != Packet::VERB_OK) && (verb != Packet::VERB_ERROR) && (verb != Packet::VERB_RENDEZVOUS) && (verb != Packet::VERB_PUSH_DIRECT_PATHS) && (RR->cluster->findBetterEndpoint(redirectTo,_id.address(),path->address(),false)) ) { if (_vProto >= 5) { // For newer peers we can send a more idiomatic verb: PUSH_DIRECT_PATHS. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS); outp.append((uint16_t)1); // count == 1 outp.append((uint8_t)ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT); // flags: cluster redirect outp.append((uint16_t)0); // no extensions if (redirectTo.ss_family == AF_INET) { outp.append((uint8_t)4); outp.append((uint8_t)6); outp.append(redirectTo.rawIpData(),4); } else { outp.append((uint8_t)6); outp.append((uint8_t)18); outp.append(redirectTo.rawIpData(),16); } outp.append((uint16_t)redirectTo.port()); outp.armor(_key,true,path->nextOutgoingCounter()); path->send(RR,tPtr,outp.data(),outp.size(),now); } else { // For older peers we use RENDEZVOUS to coax them into contacting us elsewhere. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); // no flags RR->identity.address().appendTo(outp); outp.append((uint16_t)redirectTo.port()); if (redirectTo.ss_family == AF_INET) { outp.append((uint8_t)4); outp.append(redirectTo.rawIpData(),4); } else { outp.append((uint8_t)16); outp.append(redirectTo.rawIpData(),16); } outp.armor(_key,true,path->nextOutgoingCounter()); path->send(RR,tPtr,outp.data(),outp.size(),now); } isClusterSuboptimalPath = true; } } #endif */ _lastReceive = now; switch (verb) { case Packet::VERB_FRAME: case Packet::VERB_EXT_FRAME: case Packet::VERB_NETWORK_CONFIG_REQUEST: case Packet::VERB_NETWORK_CONFIG: case Packet::VERB_MULTICAST_FRAME: _lastNontrivialReceive = now; break; default: break; } if (trustEstablished) { _lastTrustEstablishedPacketReceived = now; path->trustedPacketReceived(now); } if (_vProto >= 9) path->updateLinkQuality((unsigned int)(packetId & 7)); if (hops == 0) { bool pathAlreadyKnown = false; bool newPathLearned = false; { Mutex::Lock _l(_paths_m); if ((path->address().ss_family == AF_INET)&&(_v4Path.p)) { const struct sockaddr_in *const r = reinterpret_cast(&(path->address())); const struct sockaddr_in *const l = reinterpret_cast(&(_v4Path.p->address())); const struct sockaddr_in *const rl = reinterpret_cast(&(path->localAddress())); const struct sockaddr_in *const ll = reinterpret_cast(&(_v4Path.p->localAddress())); if ((r->sin_addr.s_addr == l->sin_addr.s_addr)&&(r->sin_port == l->sin_port)&&(rl->sin_addr.s_addr == ll->sin_addr.s_addr)&&(rl->sin_port == ll->sin_port)) { _v4Path.lr = now; pathAlreadyKnown = true; } } else if ((path->address().ss_family == AF_INET6)&&(_v6Path.p)) { const struct sockaddr_in6 *const r = reinterpret_cast(&(path->address())); const struct sockaddr_in6 *const l = reinterpret_cast(&(_v6Path.p->address())); const struct sockaddr_in6 *const rl = reinterpret_cast(&(path->localAddress())); const struct sockaddr_in6 *const ll = reinterpret_cast(&(_v6Path.p->localAddress())); if ((!memcmp(r->sin6_addr.s6_addr,l->sin6_addr.s6_addr,16))&&(r->sin6_port == l->sin6_port)&&(!memcmp(rl->sin6_addr.s6_addr,ll->sin6_addr.s6_addr,16))&&(rl->sin6_port == ll->sin6_port)) { _v6Path.lr = now; pathAlreadyKnown = true; } } } if ( (!pathAlreadyKnown) && (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localAddress(),path->address())) ) { Mutex::Lock _l(_paths_m); _PeerPath *potentialNewPeerPath = (_PeerPath *)0; if (path->address().ss_family == AF_INET) { if ( (!_v4Path.p) || (!_v4Path.p->alive(now)) || (path->preferenceRank() >= _v4Path.p->preferenceRank()) ) { potentialNewPeerPath = &_v4Path; } } else if (path->address().ss_family == AF_INET6) { if ( (!_v6Path.p) || (!_v6Path.p->alive(now)) || (path->preferenceRank() >= _v6Path.p->preferenceRank()) ) { potentialNewPeerPath = &_v6Path; } } if (potentialNewPeerPath) { if (verb == Packet::VERB_OK) { potentialNewPeerPath->lr = now; potentialNewPeerPath->p = path; newPathLearned = true; } else { TRACE("got %s via unknown path %s(%s), confirming...",Packet::verbString(verb),_id.address().toString().c_str(),path->address().toString().c_str()); attemptToContactAt(tPtr,path->localAddress(),path->address(),now,true,path->nextOutgoingCounter()); path->sent(now); } } } if (newPathLearned) writeState(tPtr,now); } else if (this->trustEstablished(now)) { // Send PUSH_DIRECT_PATHS if hops>0 (relayed) and we have a trust relationship (common network membership) if ((now - _lastDirectPathPushSent) >= ZT_DIRECT_PATH_PUSH_INTERVAL) { _lastDirectPathPushSent = now; std::vector pathsToPush; std::vector dps(RR->node->directPaths()); for(std::vector::const_iterator i(dps.begin());i!=dps.end();++i) pathsToPush.push_back(*i); std::vector sym(RR->sa->getSymmetricNatPredictions()); for(unsigned long i=0,added=0;inode->prng() % sym.size()]); if (std::find(pathsToPush.begin(),pathsToPush.end(),tmp) == pathsToPush.end()) { pathsToPush.push_back(tmp); if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) break; } } if (pathsToPush.size() > 0) { #ifdef ZT_TRACE std::string ps; for(std::vector::const_iterator p(pathsToPush.begin());p!=pathsToPush.end();++p) { if (ps.length() > 0) ps.push_back(','); ps.append(p->toString()); } TRACE("pushing %u direct paths to %s: %s",(unsigned int)pathsToPush.size(),_id.address().toString().c_str(),ps.c_str()); #endif std::vector::const_iterator p(pathsToPush.begin()); while (p != pathsToPush.end()) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS); outp.addSize(2); // leave room for count unsigned int count = 0; while ((p != pathsToPush.end())&&((outp.size() + 24) < 1200)) { uint8_t addressType = 4; switch(p->ss_family) { case AF_INET: break; case AF_INET6: addressType = 6; break; default: // we currently only push IP addresses ++p; continue; } outp.append((uint8_t)0); // no flags outp.append((uint16_t)0); // no extensions outp.append(addressType); outp.append((uint8_t)((addressType == 4) ? 6 : 18)); outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16)); outp.append((uint16_t)p->port()); ++count; ++p; } if (count) { outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count); outp.armor(_key,true,path->nextOutgoingCounter()); path->send(RR,tPtr,outp.data(),outp.size(),now); } } } } } } bool Peer::sendDirect(void *tPtr,const void *data,unsigned int len,uint64_t now,bool force) { Mutex::Lock _l(_paths_m); uint64_t v6lr = 0; if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) ) v6lr = _v6Path.p->lastIn(); uint64_t v4lr = 0; if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) ) v4lr = _v4Path.p->lastIn(); if ( (v6lr > v4lr) && ((now - v6lr) < ZT_PATH_ALIVE_TIMEOUT) ) { return _v6Path.p->send(RR,tPtr,data,len,now); } else if ((now - v4lr) < ZT_PATH_ALIVE_TIMEOUT) { return _v4Path.p->send(RR,tPtr,data,len,now); } else if (force) { if (v6lr > v4lr) { return _v6Path.p->send(RR,tPtr,data,len,now); } else if (v4lr) { return _v4Path.p->send(RR,tPtr,data,len,now); } } return false; } SharedPtr Peer::getBestPath(uint64_t now,bool includeExpired) { Mutex::Lock _l(_paths_m); uint64_t v6lr = 0; if ( ( includeExpired || ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) ) && (_v6Path.p) ) v6lr = _v6Path.p->lastIn(); uint64_t v4lr = 0; if ( ( includeExpired || ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) ) && (_v4Path.p) ) v4lr = _v4Path.p->lastIn(); if (v6lr > v4lr) { return _v6Path.p; } else if (v4lr) { return _v4Path.p; } return SharedPtr(); } void Peer::sendHELLO(void *tPtr,const InetAddress &localAddr,const InetAddress &atAddress,uint64_t now,unsigned int counter) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(now); RR->identity.serialize(outp,false); atAddress.serialize(outp); outp.append((uint64_t)RR->topology->planetWorldId()); outp.append((uint64_t)RR->topology->planetWorldTimestamp()); const unsigned int startCryptedPortionAt = outp.size(); std::vector moons(RR->topology->moons()); std::vector moonsWanted(RR->topology->moonsWanted()); outp.append((uint16_t)(moons.size() + moonsWanted.size())); for(std::vector::const_iterator m(moons.begin());m!=moons.end();++m) { outp.append((uint8_t)m->type()); outp.append((uint64_t)m->id()); outp.append((uint64_t)m->timestamp()); } for(std::vector::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) { outp.append((uint8_t)World::TYPE_MOON); outp.append(*m); outp.append((uint64_t)0); } const unsigned int corSizeAt = outp.size(); outp.addSize(2); RR->topology->appendCertificateOfRepresentation(outp); outp.setAt(corSizeAt,(uint16_t)(outp.size() - (corSizeAt + 2))); outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt); RR->node->expectReplyTo(outp.packetId()); if (atAddress) { outp.armor(_key,false,counter); // false == don't encrypt full payload, but add MAC RR->node->putPacket(tPtr,localAddr,atAddress,outp.data(),outp.size()); } else { RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC } } void Peer::attemptToContactAt(void *tPtr,const InetAddress &localAddr,const InetAddress &atAddress,uint64_t now,bool sendFullHello,unsigned int counter) { if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO); RR->node->expectReplyTo(outp.packetId()); outp.armor(_key,true,counter); RR->node->putPacket(tPtr,localAddr,atAddress,outp.data(),outp.size()); } else { sendHELLO(tPtr,localAddr,atAddress,now,counter); } } void Peer::tryMemorizedPath(void *tPtr,uint64_t now) { if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) { _lastTriedMemorizedPath = now; InetAddress mp; if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp)) attemptToContactAt(tPtr,InetAddress(),mp,now,true,0); } } bool Peer::doPingAndKeepalive(void *tPtr,uint64_t now,int inetAddressFamily) { Mutex::Lock _l(_paths_m); if (inetAddressFamily < 0) { uint64_t v6lr = 0; if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) ) v6lr = _v6Path.p->lastIn(); uint64_t v4lr = 0; if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) ) v4lr = _v4Path.p->lastIn(); if (v6lr > v4lr) { if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) { attemptToContactAt(tPtr,_v6Path.p->localAddress(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter()); _v6Path.p->sent(now); return true; } } else if (v4lr) { if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) { attemptToContactAt(tPtr,_v4Path.p->localAddress(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter()); _v4Path.p->sent(now); return true; } } } else { if ( (inetAddressFamily == AF_INET) && ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) ) { if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) { attemptToContactAt(tPtr,_v4Path.p->localAddress(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter()); _v4Path.p->sent(now); return true; } } else if ( (inetAddressFamily == AF_INET6) && ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) ) { if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) { attemptToContactAt(tPtr,_v6Path.p->localAddress(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter()); _v6Path.p->sent(now); return true; } } } return false; } void Peer::writeState(void *tPtr,const uint64_t now) { try { Buffer b; b.append((uint8_t)1); // version b.append(now); _id.serialize(b); { Mutex::Lock _l(_paths_m); unsigned int count = 0; if (_v4Path.lr) ++count; if (_v6Path.lr) ++count; b.append((uint8_t)count); if (_v4Path.lr) { b.append(_v4Path.lr); b.append(_v4Path.p->lastOut()); b.append(_v4Path.p->lastIn()); b.append(_v4Path.p->lastTrustEstablishedPacketReceived()); b.append((uint16_t)_v4Path.p->distance()); _v4Path.p->address().serialize(b); _v4Path.p->localAddress().serialize(b); } if (_v6Path.lr) { b.append(_v6Path.lr); b.append(_v6Path.p->lastOut()); b.append(_v6Path.p->lastIn()); b.append(_v6Path.p->lastTrustEstablishedPacketReceived()); b.append((uint16_t)_v6Path.p->distance()); _v6Path.p->address().serialize(b); _v6Path.p->localAddress().serialize(b); } } b.append(_lastReceive); b.append(_lastNontrivialReceive); b.append(_lastTriedMemorizedPath); b.append(_lastDirectPathPushSent); b.append(_lastDirectPathPushReceive); b.append(_lastCredentialRequestSent); b.append(_lastWhoisRequestReceived); b.append(_lastEchoRequestReceived); b.append(_lastComRequestReceived); b.append(_lastComRequestSent); b.append(_lastCredentialsReceived); b.append(_lastTrustEstablishedPacketReceived); b.append(_vProto); b.append(_vMajor); b.append(_vMinor); b.append(_vRevision); b.append((uint16_t)0); // length of additional fields uint64_t tmp[2]; tmp[0] = _id.address().toInt(); tmp[1] = 0; RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER_STATE,tmp,b.data(),b.size()); _lastWroteState = now; } catch ( ... ) {} // sanity check, should not be possible } bool Peer::applyStateUpdate(const void *data,unsigned int len) { try { Buffer b(data,len); unsigned int ptr = 0; if (b[ptr++] != 1) return false; const uint64_t ts = b.at(ptr); ptr += 8; if (ts <= _lastReceivedStateTimestamp) return false; const unsigned int pathCount = (unsigned int)b[ptr++]; { Mutex::Lock _l(_paths_m); for(unsigned int i=0;i(ptr); ptr += 8; const uint64_t lastOut = b.at(ptr); ptr += 8; const uint64_t lastIn = b.at(ptr); ptr += 8; const uint64_t lastTrustEstablishedPacketReceived = b.at(ptr); ptr += 8; const unsigned int distance = b.at(ptr); ptr += 2; InetAddress addr,localAddr; ptr += addr.deserialize(b,ptr); ptr += localAddr.deserialize(b,ptr); if (addr.ss_family == localAddr.ss_family) { _PeerPath *p = (_PeerPath *)0; switch(addr.ss_family) { case AF_INET: p = &_v4Path; break; case AF_INET6: p = &_v6Path; break; } if (p) { if ( ((p->p->address() != addr)||(p->p->localAddress() != localAddr)) && (p->p->distance() > distance) ) p->p = RR->topology->getPath(localAddr,addr); p->lr = lr; p->p->updateFromRemoteState(lastOut,lastIn,lastTrustEstablishedPacketReceived); } } } } _lastReceive = std::max(_lastReceive,b.at(ptr)); ptr += 8; _lastNontrivialReceive = std::max(_lastNontrivialReceive,b.at(ptr)); ptr += 8; _lastTriedMemorizedPath = std::max(_lastTriedMemorizedPath,b.at(ptr)); ptr += 8; _lastDirectPathPushSent = std::max(_lastDirectPathPushSent,b.at(ptr)); ptr += 8; _lastDirectPathPushReceive = std::max(_lastDirectPathPushReceive,b.at(ptr)); ptr += 8; _lastCredentialRequestSent = std::max(_lastCredentialRequestSent,b.at(ptr)); ptr += 8; _lastWhoisRequestReceived = std::max(_lastWhoisRequestReceived,b.at(ptr)); ptr += 8; _lastEchoRequestReceived = std::max(_lastEchoRequestReceived,b.at(ptr)); ptr += 8; _lastComRequestReceived = std::max(_lastComRequestReceived,b.at(ptr)); ptr += 8; _lastComRequestSent = std::max(_lastComRequestSent,b.at(ptr)); ptr += 8; _lastCredentialsReceived = std::max(_lastCredentialsReceived,b.at(ptr)); ptr += 8; _lastTrustEstablishedPacketReceived = std::max(_lastTrustEstablishedPacketReceived,b.at(ptr)); ptr += 8; _vProto = b.at(ptr); ptr += 2; _vMajor = b.at(ptr); ptr += 2; _vMinor = b.at(ptr); ptr += 2; _vRevision = b.at(ptr); ptr += 2; _lastReceivedStateTimestamp = ts; return true; } catch ( ... ) {} // ignore invalid state updates return false; } } // namespace ZeroTier