/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2011-2014 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include "Constants.hpp" #ifdef __WINDOWS__ #include #include #endif #include "Switch.hpp" #include "Node.hpp" #include "EthernetTap.hpp" #include "InetAddress.hpp" #include "Topology.hpp" #include "RuntimeEnvironment.hpp" #include "Peer.hpp" #include "NodeConfig.hpp" #include "CMWC4096.hpp" #include "AntiRecursion.hpp" #include "../version.h" namespace ZeroTier { Switch::Switch(const RuntimeEnvironment *renv) : _r(renv), _lastBeacon(0), _multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup { } Switch::~Switch() { } void Switch::onRemotePacket(const SharedPtr &fromSock,const InetAddress &fromAddr,Buffer &data) { try { if (data.size() == ZT_PROTO_BEACON_LENGTH) { _handleBeacon(fromSock,fromAddr,data); } else if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) { if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) _handleRemotePacketFragment(fromSock,fromAddr,data); else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH) _handleRemotePacketHead(fromSock,fromAddr,data); } } catch (std::exception &ex) { TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what()); } catch ( ... ) { TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str()); } } void Switch::onLocalEthernet(const SharedPtr &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data) { SharedPtr nconf(network->config2()); if (!nconf) return; // Sanity check -- bridge loop? OS problem? if (to == network->mac()) return; /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links. * Note: even when we introduce a more purposeful binding of the main UDP port, this can * still happen because Windows likes to send broadcasts over interfaces that have little * to do with their intended target audience. :P */ if (!_r->antiRec->checkEthernetFrame(data.data(),data.size())) { TRACE("%s: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->tapDeviceName().c_str(),etherTypeName(etherType),data.size()); return; } // Check to make sure this protocol is allowed on this network if (!nconf->permitsEtherType(etherType)) { TRACE("%s: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->tapDeviceName().c_str(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id()); return; } // Check if this packet is from someone other than the tap -- i.e. bridged in bool fromBridged = false; if (from != network->mac()) { if (!network->permitsBridging(_r->identity.address())) { LOG("%s: %s -> %s %s not forwarded, bridging disabled on %.16llx or this peer not a bridge",network->tapDeviceName().c_str(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id()); return; } fromBridged = true; } if (to.isMulticast()) { // Destination is a multicast address (including broadcast) uint64_t now = Utils::now(); MulticastGroup mg(to,0); if (to.isBroadcast()) { if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() >= 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01)) { // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable // Also: enableBroadcast() does not apply to ARP since it's required for IPv4 mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0)); } else if (!nconf->enableBroadcast()) { // Don't transmit broadcasts if this network doesn't want them TRACE("%s: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled on network %.16llx",network->tapDeviceName().c_str(),network->id()); return; } } /* Learn multicast groups for bridged-in hosts. * Note that some OSes, most notably Linux, do this for you by learning * multicast addresses on bridge interfaces and subscribing each slave. * But in that case this does no harm, as the sets are just merged. */ if (fromBridged) network->learnBridgedMulticastGroup(mg,now); // Check multicast/broadcast bandwidth quotas and reject if quota exceeded if (!network->updateAndCheckMulticastBalance(_r->identity.address(),mg,data.size())) { TRACE("%s: didn't multicast %d bytes, quota exceeded for multicast group %s",network->tapDeviceName().c_str(),(int)data.size(),mg.toString().c_str()); return; } TRACE("%s: MULTICAST %s -> %s %s %d",network->tapDeviceName().c_str(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),(int)data.size()); const unsigned int mcid = ++_multicastIdCounter & 0xffffff; const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM]; unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH]; // extra ZT_ADDRESS_LENGTH is for first hop, not put in packet but serves as destination for packet unsigned char *const fifoEnd = fifo + sizeof(fifo); const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size(); const SharedPtr supernode(_r->topology->getBestSupernode()); // For each bit prefix send a packet to a list of destinations within it for(unsigned int prefix=0,np=((unsigned int)2 << (nconf->multicastPrefixBits() - 1));prefixidentity.address(), nconf->multicastPrefixBits(), prefix, _r->topology, now); for(std::set
::const_iterator ab(nconf->activeBridges().begin());ab!=nconf->activeBridges().end();++ab) { if (!appender(*ab)) break; } _r->mc->getNextHops(network->id(),mg,appender); // Pad remainder of FIFO with zeroes while (fifoPtr != fifoEnd) *(fifoPtr++) = (unsigned char)0; // First element in FIFO is first hop, rest of FIFO is sent in packet *to* first hop Address firstHop(fifo,ZT_ADDRESS_LENGTH); if (!firstHop) { if (supernode) firstHop = supernode->address(); else continue; // nowhere to go } Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME); outp.append((uint16_t)0); outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM); outp.append((nconf->com()) ? (unsigned char)ZT_PROTO_VERB_MULTICAST_FRAME_FLAGS_HAS_MEMBERSHIP_CERTIFICATE : (unsigned char)0); outp.append(network->id()); outp.append(bloomNonce); outp.append((unsigned char)nconf->multicastPrefixBits()); outp.append((unsigned char)prefix); _r->identity.address().appendTo(outp); // lower 40 bits of MCID are my address outp.append((unsigned char)((mcid >> 16) & 0xff)); outp.append((unsigned char)((mcid >> 8) & 0xff)); outp.append((unsigned char)(mcid & 0xff)); // upper 24 bits of MCID are from our counter from.appendTo(outp); mg.mac().appendTo(outp); outp.append(mg.adi()); outp.append((uint16_t)etherType); outp.append((uint16_t)data.size()); outp.append(data); C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen)); outp.append((uint16_t)sig.size()); outp.append(sig.data,(unsigned int)sig.size()); // FIXME: now we send the netconf cert with every single multicast, // which pretty much ensures everyone has it ahead of time but adds // some redundant payload. Maybe think abouut this in the future. if (nconf->com()) nconf->com().serialize(outp); outp.compress(); send(outp,true); } return; } if (to[0] == MAC::firstOctetForNetwork(network->id())) { // Destination is another ZeroTier node Address toZT(to.toAddress(network->id())); if (network->isAllowed(toZT)) { network->pushMembershipCertificate(toZT,false,Utils::now()); if (fromBridged) { // Must use EXT_FRAME if source is not myself Packet outp(toZT,_r->identity.address(),Packet::VERB_EXT_FRAME); outp.append(network->id()); outp.append((unsigned char)0); to.appendTo(outp); from.appendTo(outp); outp.append((uint16_t)etherType); outp.append(data); outp.compress(); send(outp,true); } else { // VERB_FRAME is really just lighter weight EXT_FRAME, can use for direct-to-direct (before bridging this was the only unicast method) Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME); outp.append(network->id()); outp.append((uint16_t)etherType); outp.append(data); outp.compress(); send(outp,true); } } else { TRACE("%s: UNICAST: %s -> %s %s dropped, destination not a member of closed network %.16llx",network->tapDeviceName().c_str(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id()); } return; } { // Destination is behind another bridge Address bridges[ZT_MAX_BRIDGE_SPAM]; unsigned int numBridges = 0; bridges[0] = network->findBridgeTo(to); if ((bridges[0])&&(bridges[0] != _r->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) { // We have a known bridge route for this MAC. ++numBridges; } else if (!nconf->activeBridges().empty()) { /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active * bridges. This is similar to what many switches do -- if they do not * know which port corresponds to a MAC, they send it to all ports. If * there aren't any active bridges, numBridges will stay 0 and packet * is dropped. */ std::set
::const_iterator ab(nconf->activeBridges().begin()); if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) { // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all while (ab != nconf->activeBridges().end()) { if (network->isAllowed(*ab)) // config sanity check bridges[numBridges++] = *ab; ++ab; } } else { // Otherwise pick a random set of them while (numBridges < ZT_MAX_BRIDGE_SPAM) { if (ab == nconf->activeBridges().end()) ab = nconf->activeBridges().begin(); if (((unsigned long)_r->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) { if (network->isAllowed(*ab)) // config sanity check bridges[numBridges++] = *ab; ++ab; } else ++ab; } } } for(unsigned int b=0;bidentity.address(),Packet::VERB_EXT_FRAME); outp.append(network->id()); outp.append((unsigned char)0); to.appendTo(outp); from.appendTo(outp); outp.append((uint16_t)etherType); outp.append(data); outp.compress(); send(outp,true); } } } void Switch::send(const Packet &packet,bool encrypt) { if (packet.destination() == _r->identity.address()) { TRACE("BUG: caught attempt to send() to self, ignored"); return; } if (!_trySend(packet,encrypt)) { Mutex::Lock _l(_txQueue_m); _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt))); } } void Switch::sendHELLO(const Address &dest) { Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(Utils::now()); _r->identity.serialize(outp,false); send(outp,false); } bool Switch::sendHELLO(const SharedPtr &dest,const Path &path) { uint64_t now = Utils::now(); Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(now); _r->identity.serialize(outp,false); outp.armor(dest->key(),false); _r->antiRec->logOutgoingZT(outp.data(),outp.size()); return _r->sm->send(path.address(),path.tcp(),path.type() == Path::PATH_TYPE_TCP_OUT,outp.data(),outp.size()); } bool Switch::sendHELLO(const SharedPtr &dest,const InetAddress &destUdp) { uint64_t now = Utils::now(); Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(now); _r->identity.serialize(outp,false); outp.armor(dest->key(),false); _r->antiRec->logOutgoingZT(outp.data(),outp.size()); return _r->sm->send(destUdp,false,false,outp.data(),outp.size()); } bool Switch::unite(const Address &p1,const Address &p2,bool force) { if ((p1 == _r->identity.address())||(p2 == _r->identity.address())) return false; SharedPtr p1p = _r->topology->getPeer(p1); if (!p1p) return false; SharedPtr p2p = _r->topology->getPeer(p2); if (!p2p) return false; uint64_t now = Utils::now(); std::pair cg(Peer::findCommonGround(*p1p,*p2p,now)); if (!(cg.first)) return false; // Addresses are sorted in key for last unite attempt map for order // invariant lookup: (p1,p2) == (p2,p1) Array uniteKey; if (p1 >= p2) { uniteKey[0] = p2; uniteKey[1] = p1; } else { uniteKey[0] = p1; uniteKey[1] = p2; } { Mutex::Lock _l(_lastUniteAttempt_m); std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey)); if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL)) return false; else _lastUniteAttempt[uniteKey] = now; } TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str()); /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and * P2 in randomized order in terms of which gets sent first. This is done * since in a few cases NAT-t can be sensitive to slight timing differences * in terms of when the two peers initiate. Normally this is accounted for * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but * given that supernodes are hosted on cloud providers this can in some * cases have a few ms of latency between packet departures. By randomizing * the order we make each attempted NAT-t favor one or the other going * first, meaning if it doesn't succeed the first time it might the second * and so forth. */ unsigned int alt = _r->prng->next32() & 1; unsigned int completed = alt + 2; while (alt != completed) { if ((alt & 1) == 0) { // Tell p1 where to find p2. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((unsigned char)0); p2.appendTo(outp); outp.append((uint16_t)cg.first.port()); if (cg.first.isV6()) { outp.append((unsigned char)16); outp.append(cg.first.rawIpData(),16); } else { outp.append((unsigned char)4); outp.append(cg.first.rawIpData(),4); } outp.armor(p1p->key(),true); p1p->send(_r,outp.data(),outp.size(),now); } else { // Tell p2 where to find p1. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((unsigned char)0); p1.appendTo(outp); outp.append((uint16_t)cg.second.port()); if (cg.second.isV6()) { outp.append((unsigned char)16); outp.append(cg.second.rawIpData(),16); } else { outp.append((unsigned char)4); outp.append(cg.second.rawIpData(),4); } outp.armor(p2p->key(),true); p2p->send(_r,outp.data(),outp.size(),now); } ++alt; // counts up and also flips LSB } return true; } void Switch::contact(const SharedPtr &peer,const InetAddress &atAddr) { #ifdef ZT_FIREWALL_OPENER_HOPS _r->sm->sendFirewallOpener(atAddr,ZT_FIREWALL_OPENER_HOPS); #endif { Mutex::Lock _l(_contactQueue_m); _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,atAddr)); } // Kick main loop out of wait so that it can pick up this // change to our scheduled timer tasks. _r->sm->whack(); } unsigned long Switch::doTimerTasks() { unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value uint64_t now = Utils::now(); { Mutex::Lock _l(_contactQueue_m); for(std::list::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) { if (now >= qi->fireAtTime) { TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str()); sendHELLO(qi->peer,qi->inaddr); _contactQueue.erase(qi++); } else { nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now)); ++qi; } } } { Mutex::Lock _l(_outstandingWhoisRequests_m); for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) { unsigned long since = (unsigned long)(now - i->second.lastSent); if (since >= ZT_WHOIS_RETRY_DELAY) { if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) { TRACE("WHOIS %s timed out",i->first.toString().c_str()); _outstandingWhoisRequests.erase(i++); continue; } else { i->second.lastSent = now; i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries); ++i->second.retries; TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries); nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY); } } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since); ++i; } } { Mutex::Lock _l(_txQueue_m); for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) { if (_trySend(i->second.packet,i->second.encrypt)) _txQueue.erase(i++); else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) { TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str()); _txQueue.erase(i++); } else ++i; } } { Mutex::Lock _l(_rxQueue_m); for(std::list< SharedPtr >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) { if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) { TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str()); _rxQueue.erase(i++); } else ++i; } } { Mutex::Lock _l(_defragQueue_m); for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) { if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) { TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first); _defragQueue.erase(i++); } else ++i; } } return std::max(nextDelay,(unsigned long)10); // minimum delay } void Switch::announceMulticastGroups(const std::map< SharedPtr,std::set > &allMemberships) { std::vector< SharedPtr > directPeers; _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now())); #ifdef ZT_TRACE unsigned int totalMulticastGroups = 0; for(std::map< SharedPtr,std::set >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i) totalMulticastGroups += (unsigned int)i->second.size(); TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size()); #endif uint64_t now = Utils::now(); for(std::vector< SharedPtr >::iterator p(directPeers.begin());p!=directPeers.end();++p) { Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE); for(std::map< SharedPtr,std::set >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) { nwmgs->first->pushMembershipCertificate((*p)->address(),false,now); if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) { for(std::set::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) { if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) { send(outp,true); outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE); } // network ID, MAC, ADI outp.append((uint64_t)nwmgs->first->id()); mg->mac().appendTo(outp); outp.append((uint32_t)mg->adi()); } } } if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH) send(outp,true); } } void Switch::announceMulticastGroups(const SharedPtr &peer) { Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE); std::vector< SharedPtr > networks(_r->nc->networks()); uint64_t now = Utils::now(); for(std::vector< SharedPtr >::iterator n(networks.begin());n!=networks.end();++n) { if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) { (*n)->pushMembershipCertificate(peer->address(),false,now); std::set mgs((*n)->multicastGroups()); for(std::set::iterator mg(mgs.begin());mg!=mgs.end();++mg) { if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) { send(outp,true); outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE); } // network ID, MAC, ADI outp.append((uint64_t)(*n)->id()); mg->mac().appendTo(outp); outp.append((uint32_t)mg->adi()); } } } if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH) send(outp,true); } void Switch::requestWhois(const Address &addr) { //TRACE("requesting WHOIS for %s",addr.toString().c_str()); bool inserted = false; { Mutex::Lock _l(_outstandingWhoisRequests_m); std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair(addr,WhoisRequest()))); if ((inserted = entry.second)) entry.first->second.lastSent = Utils::now(); entry.first->second.retries = 0; // reset retry count if entry already existed } if (inserted) _sendWhoisRequest(addr,(const Address *)0,0); } void Switch::cancelWhoisRequest(const Address &addr) { Mutex::Lock _l(_outstandingWhoisRequests_m); _outstandingWhoisRequests.erase(addr); } void Switch::doAnythingWaitingForPeer(const SharedPtr &peer) { { // cancel pending WHOIS since we now know this peer Mutex::Lock _l(_outstandingWhoisRequests_m); _outstandingWhoisRequests.erase(peer->address()); } { // finish processing any packets waiting on peer's public key / identity Mutex::Lock _l(_rxQueue_m); for(std::list< SharedPtr >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) { if ((*rxi)->tryDecode(_r)) _rxQueue.erase(rxi++); else ++rxi; } } { // finish sending any packets waiting on peer's public key / identity Mutex::Lock _l(_txQueue_m); std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address())); for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) { if (_trySend(txi->second.packet,txi->second.encrypt)) _txQueue.erase(txi++); else ++txi; } } } const char *Switch::etherTypeName(const unsigned int etherType) throw() { switch(etherType) { case ZT_ETHERTYPE_IPV4: return "IPV4"; case ZT_ETHERTYPE_ARP: return "ARP"; case ZT_ETHERTYPE_RARP: return "RARP"; case ZT_ETHERTYPE_ATALK: return "ATALK"; case ZT_ETHERTYPE_AARP: return "AARP"; case ZT_ETHERTYPE_IPX_A: return "IPX_A"; case ZT_ETHERTYPE_IPX_B: return "IPX_B"; case ZT_ETHERTYPE_IPV6: return "IPV6"; } return "UNKNOWN"; } void Switch::_handleRemotePacketFragment(const SharedPtr &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data) { Packet::Fragment fragment(data); Address destination(fragment.destination()); if (destination != _r->identity.address()) { // Fragment is not for us, so try to relay it if (fragment.hops() < ZT_RELAY_MAX_HOPS) { fragment.incrementHops(); // Note: we don't bother initiating NAT-t for fragments, since heads will set that off. // It wouldn't hurt anything, just redundant and unnecessary. SharedPtr relayTo = _r->topology->getPeer(destination); if ((!relayTo)||(relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()) == Path::PATH_TYPE_NULL)) { // Don't know peer or no direct path -- so relay via supernode relayTo = _r->topology->getBestSupernode(); if (relayTo) relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()); } } else { TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str()); } } else { // Fragment looks like ours uint64_t pid = fragment.packetId(); unsigned int fno = fragment.fragmentNumber(); unsigned int tf = fragment.totalFragments(); if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) { // Fragment appears basically sane. Its fragment number must be // 1 or more, since a Packet with fragmented bit set is fragment 0. // Total fragments must be more than 1, otherwise why are we // seeing a Packet::Fragment? Mutex::Lock _l(_defragQueue_m); std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid)); if (dqe == _defragQueue.end()) { // We received a Packet::Fragment without its head, so queue it and wait DefragQueueEntry &dq = _defragQueue[pid]; dq.creationTime = Utils::now(); dq.frags[fno - 1] = fragment; dq.totalFragments = tf; // total fragment count is known dq.haveFragments = 1 << fno; // we have only this fragment //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str()); } else if (!(dqe->second.haveFragments & (1 << fno))) { // We have other fragments and maybe the head, so add this one and check dqe->second.frags[fno - 1] = fragment; dqe->second.totalFragments = tf; //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str()); if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) { // We have all fragments -- assemble and process full Packet //TRACE("packet %.16llx is complete, assembling and processing...",pid); SharedPtr packet(dqe->second.frag0); for(unsigned int f=1;fappend(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength()); _defragQueue.erase(dqe); if (!packet->tryDecode(_r)) { Mutex::Lock _l(_rxQueue_m); _rxQueue.push_back(packet); } } } // else this is a duplicate fragment, ignore } } } void Switch::_handleRemotePacketHead(const SharedPtr &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data) { SharedPtr packet(new PacketDecoder(data,fromSock,fromAddr)); Address source(packet->source()); Address destination(packet->destination()); //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size()); if (destination != _r->identity.address()) { // Packet is not for us, so try to relay it if (packet->hops() < ZT_RELAY_MAX_HOPS) { packet->incrementHops(); SharedPtr relayTo = _r->topology->getPeer(destination); Path::Type relayedVia; if ((relayTo)&&((relayedVia = relayTo->send(_r,packet->data(),packet->size(),Utils::now())) != Path::PATH_TYPE_NULL)) { /* If both paths are UDP, attempt to invoke UDP NAT-t between peers * by sending VERB_RENDEZVOUS. Do not do this for TCP due to GitHub * issue #63. */ if ((fromSock->udp())&&(relayedVia == Path::PATH_TYPE_UDP)) unite(source,destination,false); } else { // Don't know peer or no direct path -- so relay via supernode relayTo = _r->topology->getBestSupernode(&source,1,true); if (relayTo) relayTo->send(_r,packet->data(),packet->size(),Utils::now()); } } else { TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str()); } } else if (packet->fragmented()) { // Packet is the head of a fragmented packet series uint64_t pid = packet->packetId(); Mutex::Lock _l(_defragQueue_m); std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid)); if (dqe == _defragQueue.end()) { // If we have no other fragments yet, create an entry and save the head DefragQueueEntry &dq = _defragQueue[pid]; dq.creationTime = Utils::now(); dq.frag0 = packet; dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment dq.haveFragments = 1; // head is first bit (left to right) //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str()); } else if (!(dqe->second.haveFragments & 1)) { // If we have other fragments but no head, see if we are complete with the head if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) { // We have all fragments -- assemble and process full Packet //TRACE("packet %.16llx is complete, assembling and processing...",pid); // packet already contains head, so append fragments for(unsigned int f=1;fsecond.totalFragments;++f) packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength()); _defragQueue.erase(dqe); if (!packet->tryDecode(_r)) { Mutex::Lock _l(_rxQueue_m); _rxQueue.push_back(packet); } } else { // Still waiting on more fragments, so queue the head dqe->second.frag0 = packet; } } // else this is a duplicate head, ignore } else { // Packet is unfragmented, so just process it if (!packet->tryDecode(_r)) { Mutex::Lock _l(_rxQueue_m); _rxQueue.push_back(packet); } } } void Switch::_handleBeacon(const SharedPtr &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data) { Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); if (beaconAddr == _r->identity.address()) return; SharedPtr peer(_r->topology->getPeer(beaconAddr)); if (peer) { uint64_t now = Utils::now(); if (peer->haveUdpPath(fromAddr)) { if ((now - peer->lastDirectReceive()) >= ZT_PEER_DIRECT_PING_DELAY) peer->sendPing(_r,now); } else { if ((now - _lastBeacon) < ZT_MIN_BEACON_RESPONSE_INTERVAL) return; _lastBeacon = now; sendHELLO(peer,fromAddr); } } } Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted) { SharedPtr supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false)); if (supernode) { Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS); addr.appendTo(outp); outp.armor(supernode->key(),true); uint64_t now = Utils::now(); if (supernode->send(_r,outp.data(),outp.size(),now) != Path::PATH_TYPE_NULL) return supernode->address(); } return Address(); } bool Switch::_trySend(const Packet &packet,bool encrypt) { SharedPtr peer(_r->topology->getPeer(packet.destination())); if (peer) { uint64_t now = Utils::now(); SharedPtr via; if (peer->hasActiveDirectPath(now)) { via = peer; } else { via = _r->topology->getBestSupernode(); if (!via) return false; } Packet tmp(packet); unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU); tmp.setFragmented(chunkSize < tmp.size()); tmp.armor(peer->key(),encrypt); if (via->send(_r,tmp.data(),chunkSize,now) != Path::PATH_TYPE_NULL) { if (chunkSize < tmp.size()) { // Too big for one bite, fragment the rest unsigned int fragStart = chunkSize; unsigned int remaining = tmp.size() - chunkSize; unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)); if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining) ++fragsRemaining; unsigned int totalFragments = fragsRemaining + 1; for(unsigned int f=0;fsend(_r,frag.data(),frag.size(),now); fragStart += chunkSize; remaining -= chunkSize; } } return true; } } else requestWhois(packet.destination()); return false; } } // namespace ZeroTier