/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include
#include
#include
#include
#include
#include "../version.h"
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Switch.hpp"
#include "Node.hpp"
#include "InetAddress.hpp"
#include "Topology.hpp"
#include "Peer.hpp"
#include "CMWC4096.hpp"
#include "AntiRecursion.hpp"
#include "Packet.hpp"
namespace ZeroTier {
Switch::Switch(const RuntimeEnvironment *renv) :
RR(renv),
_lastBeacon(0)
{
}
Switch::~Switch()
{
}
void Switch::onRemotePacket(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
{
try {
if (len == ZT_PROTO_BEACON_LENGTH) {
_handleBeacon(fromAddr,linkDesperation,Buffer(data,len));
} else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
_handleRemotePacketFragment(fromAddr,linkDesperation,data,len);
} else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
_handleRemotePacketHead(fromAddr,linkDesperation,data,len);
}
}
} catch (std::exception &ex) {
TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
}
}
void Switch::onLocalEthernet(const SharedPtr &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{
SharedPtr nconf(network->config2());
if (!nconf)
return;
// Sanity check -- bridge loop? OS problem?
if (to == network->mac())
return;
/* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
* Note: even when we introduce a more purposeful binding of the main UDP port, this can
* still happen because Windows likes to send broadcasts over interfaces that have little
* to do with their intended target audience. :P */
if (!RR->antiRec->checkEthernetFrame(data,len)) {
TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
return;
}
// Check to make sure this protocol is allowed on this network
if (!nconf->permitsEtherType(etherType)) {
TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
return;
}
// Check if this packet is from someone other than the tap -- i.e. bridged in
bool fromBridged = false;
if (from != network->mac()) {
if (!network->permitsBridging(RR->identity.address())) {
TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
return;
}
fromBridged = true;
}
if (to.isMulticast()) {
// Destination is a multicast address (including broadcast)
const uint64_t now = RR->node->now();
MulticastGroup mg(to,0);
if (to.isBroadcast()) {
if (
(etherType == ZT_ETHERTYPE_ARP)&&
(len >= 28)&&
(
(((const unsigned char *)data)[2] == 0x08)&&
(((const unsigned char *)data)[3] == 0x00)&&
(((const unsigned char *)data)[4] == 6)&&
(((const unsigned char *)data)[5] == 4)&&
(((const unsigned char *)data)[7] == 0x01)
)
) {
// Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
// Also: enableBroadcast() does not apply to ARP since it's required for IPv4
mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
} else if (!nconf->enableBroadcast()) {
// Don't transmit broadcasts if this network doesn't want them
TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
return;
}
}
/* Learn multicast groups for bridged-in hosts.
* Note that some OSes, most notably Linux, do this for you by learning
* multicast addresses on bridge interfaces and subscribing each slave.
* But in that case this does no harm, as the sets are just merged. */
if (fromBridged)
network->learnBridgedMulticastGroup(mg,now);
// Check multicast/broadcast bandwidth quotas and reject if quota exceeded
if (!network->updateAndCheckMulticastBalance(mg,len)) {
TRACE("%.16llx: didn't multicast %u bytes, quota exceeded for multicast group %s",network->id(),len,mg.toString().c_str());
return;
}
//TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
RR->mc->send(
((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
nconf->multicastLimit(),
now,
network->id(),
nconf->activeBridges(),
mg,
(fromBridged) ? from : MAC(),
etherType,
data,
len);
return;
}
if (to[0] == MAC::firstOctetForNetwork(network->id())) {
// Destination is another ZeroTier peer on the same network
Address toZT(to.toAddress(network->id()));
if (network->isAllowed(toZT)) {
if (network->peerNeedsOurMembershipCertificate(toZT,RR->node->now())) {
// TODO: once there are no more <1.0.0 nodes around, we can
// bundle this with EXT_FRAME instead of sending two packets.
Packet outp(toZT,RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
nconf->com().serialize(outp);
send(outp,true);
}
if (fromBridged) {
// EXT_FRAME is used for bridging or if we want to include a COM
Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(network->id());
outp.append((unsigned char)0);
to.appendTo(outp);
from.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
send(outp,true);
} else {
// FRAME is a shorter version that can be used when there's no bridging and no COM
Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
outp.append(network->id());
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
send(outp,true);
}
//TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged);
} else {
TRACE("%.16llx: UNICAST: %s -> %s etherType==%s dropped, destination not a member of private network",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
}
return;
}
{
// Destination is bridged behind a remote peer
Address bridges[ZT_MAX_BRIDGE_SPAM];
unsigned int numBridges = 0;
bridges[0] = network->findBridgeTo(to);
if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
// We have a known bridge route for this MAC.
++numBridges;
} else if (!nconf->activeBridges().empty()) {
/* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
* bridges. This is similar to what many switches do -- if they do not
* know which port corresponds to a MAC, they send it to all ports. If
* there aren't any active bridges, numBridges will stay 0 and packet
* is dropped. */
std::vector::const_iterator ab(nconf->activeBridges().begin());
if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
// If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
while (ab != nconf->activeBridges().end()) {
if (network->isAllowed(*ab)) // config sanity check
bridges[numBridges++] = *ab;
++ab;
}
} else {
// Otherwise pick a random set of them
while (numBridges < ZT_MAX_BRIDGE_SPAM) {
if (ab == nconf->activeBridges().end())
ab = nconf->activeBridges().begin();
if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
if (network->isAllowed(*ab)) // config sanity check
bridges[numBridges++] = *ab;
++ab;
} else ++ab;
}
}
}
for(unsigned int b=0;bidentity.address(),Packet::VERB_EXT_FRAME);
outp.append(network->id());
outp.append((unsigned char)0);
to.appendTo(outp);
from.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
send(outp,true);
}
}
}
void Switch::send(const Packet &packet,bool encrypt)
{
if (packet.destination() == RR->identity.address()) {
TRACE("BUG: caught attempt to send() to self, ignored");
return;
}
if (!_trySend(packet,encrypt)) {
Mutex::Lock _l(_txQueue_m);
_txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(RR->node->now(),packet,encrypt)));
}
}
bool Switch::unite(const Address &p1,const Address &p2,bool force)
{
if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
return false;
SharedPtr p1p = RR->topology->getPeer(p1);
if (!p1p)
return false;
SharedPtr p2p = RR->topology->getPeer(p2);
if (!p2p)
return false;
const uint64_t now = RR->node->now();
// Right now we only unite desperation == 0 links, which will be direct
std::pair cg(Peer::findCommonGround(*p1p,*p2p,now,0));
if (!(cg.first))
return false;
if (cg.first.ipScope() != cg.second.ipScope())
return false;
// Addresses are sorted in key for last unite attempt map for order
// invariant lookup: (p1,p2) == (p2,p1)
Array uniteKey;
if (p1 >= p2) {
uniteKey[0] = p2;
uniteKey[1] = p1;
} else {
uniteKey[0] = p1;
uniteKey[1] = p2;
}
{
Mutex::Lock _l(_lastUniteAttempt_m);
std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
return false;
else _lastUniteAttempt[uniteKey] = now;
}
TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
/* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
* P2 in randomized order in terms of which gets sent first. This is done
* since in a few cases NAT-t can be sensitive to slight timing differences
* in terms of when the two peers initiate. Normally this is accounted for
* by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
* given that supernodes are hosted on cloud providers this can in some
* cases have a few ms of latency between packet departures. By randomizing
* the order we make each attempted NAT-t favor one or the other going
* first, meaning if it doesn't succeed the first time it might the second
* and so forth. */
unsigned int alt = RR->prng->next32() & 1;
unsigned int completed = alt + 2;
while (alt != completed) {
if ((alt & 1) == 0) {
// Tell p1 where to find p2.
Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p2.appendTo(outp);
outp.append((uint16_t)cg.first.port());
if (cg.first.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.first.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.first.rawIpData(),4);
}
outp.armor(p1p->key(),true);
p1p->send(RR,outp.data(),outp.size(),now);
} else {
// Tell p2 where to find p1.
Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p1.appendTo(outp);
outp.append((uint16_t)cg.second.port());
if (cg.second.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.second.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.second.rawIpData(),4);
}
outp.armor(p2p->key(),true);
p2p->send(RR,outp.data(),outp.size(),now);
}
++alt; // counts up and also flips LSB
}
return true;
}
void Switch::contact(const SharedPtr &peer,const InetAddress &atAddr,unsigned int maxDesperation)
{
TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
const uint64_t now = RR->node->now();
// Attempt to contact at zero desperation first
peer->attemptToContactAt(RR,atAddr,0,now);
// If we have not punched through after this timeout, open refreshing can of whupass
{
Mutex::Lock _l(_contactQueue_m);
_contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr,maxDesperation));
}
}
void Switch::requestWhois(const Address &addr)
{
bool inserted = false;
{
Mutex::Lock _l(_outstandingWhoisRequests_m);
std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair(addr,WhoisRequest())));
if ((inserted = entry.second))
entry.first->second.lastSent = RR->node->now();
entry.first->second.retries = 0; // reset retry count if entry already existed
}
if (inserted)
_sendWhoisRequest(addr,(const Address *)0,0);
}
void Switch::cancelWhoisRequest(const Address &addr)
{
Mutex::Lock _l(_outstandingWhoisRequests_m);
_outstandingWhoisRequests.erase(addr);
}
void Switch::doAnythingWaitingForPeer(const SharedPtr &peer)
{
{ // cancel pending WHOIS since we now know this peer
Mutex::Lock _l(_outstandingWhoisRequests_m);
_outstandingWhoisRequests.erase(peer->address());
}
{ // finish processing any packets waiting on peer's public key / identity
Mutex::Lock _l(_rxQueue_m);
for(std::list< SharedPtr >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
if ((*rxi)->tryDecode(RR))
_rxQueue.erase(rxi++);
else ++rxi;
}
}
{ // finish sending any packets waiting on peer's public key / identity
Mutex::Lock _l(_txQueue_m);
std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
if (_trySend(txi->second.packet,txi->second.encrypt))
_txQueue.erase(txi++);
else ++txi;
}
}
}
unsigned long Switch::doTimerTasks(uint64_t now)
{
unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
{ // Aggressive NAT traversal time!
Mutex::Lock _l(_contactQueue_m);
for(std::list::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
if (now >= qi->fireAtTime) {
if (qi->peer->hasActiveDirectPath(now)) {
// We've successfully NAT-t'd, so cancel attempt
_contactQueue.erase(qi++);
continue;
} else {
// Nope, nothing yet. Time to kill some kittens.
switch(qi->strategyIteration++) {
case 0: {
// First strategy: rifle method: direct packet to known port
qi->peer->attemptToContactAt(RR,qi->inaddr,qi->currentDesperation,now);
} break;
case 1: {
// Second strategy: shotgun method up: try a few ports above
InetAddress tmpaddr(qi->inaddr);
int p = (int)qi->inaddr.port();
for(int i=0;i<9;++i) {
if (++p > 0xffff) break;
tmpaddr.setPort((unsigned int)p);
qi->peer->attemptToContactAt(RR,tmpaddr,qi->currentDesperation,now);
}
} break;
case 2: {
// Third strategy: shotgun method down: try a few ports below
InetAddress tmpaddr(qi->inaddr);
int p = (int)qi->inaddr.port();
for(int i=0;i<3;++i) {
if (--p < 1024) break;
tmpaddr.setPort((unsigned int)p);
qi->peer->attemptToContactAt(RR,tmpaddr,qi->currentDesperation,now);
}
// Escalate link desperation after all strategies attempted
++qi->currentDesperation;
if (qi->currentDesperation > qi->maxDesperation) {
// We've tried all strategies at all levels of desperation, give up.
_contactQueue.erase(qi++);
continue;
} else {
// Otherwise restart at new link desperation level (e.g. try a tougher transport)
qi->strategyIteration = 0;
}
} break;
}
qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
}
} else {
nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
}
++qi; // if qi was erased, loop will have continued before here
}
}
{ // Retry outstanding WHOIS requests
Mutex::Lock _l(_outstandingWhoisRequests_m);
for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
unsigned long since = (unsigned long)(now - i->second.lastSent);
if (since >= ZT_WHOIS_RETRY_DELAY) {
if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
TRACE("WHOIS %s timed out",i->first.toString().c_str());
_outstandingWhoisRequests.erase(i++);
continue;
} else {
i->second.lastSent = now;
i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
++i->second.retries;
TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
}
} else {
nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
}
++i;
}
}
{ // Time out TX queue packets that never got WHOIS lookups or other info.
Mutex::Lock _l(_txQueue_m);
for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
if (_trySend(i->second.packet,i->second.encrypt))
_txQueue.erase(i++);
else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
_txQueue.erase(i++);
} else ++i;
}
}
{ // Time out RX queue packets that never got WHOIS lookups or other info.
Mutex::Lock _l(_rxQueue_m);
for(std::list< SharedPtr >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
_rxQueue.erase(i++);
} else ++i;
}
}
{ // Time out packets that didn't get all their fragments.
Mutex::Lock _l(_defragQueue_m);
for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
_defragQueue.erase(i++);
} else ++i;
}
}
return nextDelay;
}
const char *Switch::etherTypeName(const unsigned int etherType)
throw()
{
switch(etherType) {
case ZT_ETHERTYPE_IPV4: return "IPV4";
case ZT_ETHERTYPE_ARP: return "ARP";
case ZT_ETHERTYPE_RARP: return "RARP";
case ZT_ETHERTYPE_ATALK: return "ATALK";
case ZT_ETHERTYPE_AARP: return "AARP";
case ZT_ETHERTYPE_IPX_A: return "IPX_A";
case ZT_ETHERTYPE_IPX_B: return "IPX_B";
case ZT_ETHERTYPE_IPV6: return "IPV6";
}
return "UNKNOWN";
}
void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
{
Packet::Fragment fragment(data,len);
Address destination(fragment.destination());
if (destination != RR->identity.address()) {
// Fragment is not for us, so try to relay it
if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
fragment.incrementHops();
// Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
// It wouldn't hurt anything, just redundant and unnecessary.
SharedPtr relayTo = RR->topology->getPeer(destination);
if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
// Don't know peer or no direct path -- so relay via supernode
relayTo = RR->topology->getBestSupernode();
if (relayTo)
relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
}
} else {
TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
}
} else {
// Fragment looks like ours
uint64_t pid = fragment.packetId();
unsigned int fno = fragment.fragmentNumber();
unsigned int tf = fragment.totalFragments();
if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
// Fragment appears basically sane. Its fragment number must be
// 1 or more, since a Packet with fragmented bit set is fragment 0.
// Total fragments must be more than 1, otherwise why are we
// seeing a Packet::Fragment?
Mutex::Lock _l(_defragQueue_m);
std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
if (dqe == _defragQueue.end()) {
// We received a Packet::Fragment without its head, so queue it and wait
DefragQueueEntry &dq = _defragQueue[pid];
dq.creationTime = RR->node->now();
dq.frags[fno - 1] = fragment;
dq.totalFragments = tf; // total fragment count is known
dq.haveFragments = 1 << fno; // we have only this fragment
//TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
} else if (!(dqe->second.haveFragments & (1 << fno))) {
// We have other fragments and maybe the head, so add this one and check
dqe->second.frags[fno - 1] = fragment;
dqe->second.totalFragments = tf;
//TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
// We have all fragments -- assemble and process full Packet
//TRACE("packet %.16llx is complete, assembling and processing...",pid);
SharedPtr packet(dqe->second.frag0);
for(unsigned int f=1;fappend(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
_defragQueue.erase(dqe);
if (!packet->tryDecode(RR)) {
Mutex::Lock _l(_rxQueue_m);
_rxQueue.push_back(packet);
}
}
} // else this is a duplicate fragment, ignore
}
}
}
void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
{
SharedPtr packet(new IncomingPacket(data,len,fromAddr,linkDesperation,RR->node->now()));
Address source(packet->source());
Address destination(packet->destination());
//TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
if (destination != RR->identity.address()) {
// Packet is not for us, so try to relay it
if (packet->hops() < ZT_RELAY_MAX_HOPS) {
packet->incrementHops();
SharedPtr relayTo = RR->topology->getPeer(destination);
if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
unite(source,destination,false);
} else {
// Don't know peer or no direct path -- so relay via supernode
relayTo = RR->topology->getBestSupernode(&source,1,true);
if (relayTo)
relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
}
} else {
TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
}
} else if (packet->fragmented()) {
// Packet is the head of a fragmented packet series
uint64_t pid = packet->packetId();
Mutex::Lock _l(_defragQueue_m);
std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
if (dqe == _defragQueue.end()) {
// If we have no other fragments yet, create an entry and save the head
DefragQueueEntry &dq = _defragQueue[pid];
dq.creationTime = RR->node->now();
dq.frag0 = packet;
dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
dq.haveFragments = 1; // head is first bit (left to right)
//TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
} else if (!(dqe->second.haveFragments & 1)) {
// If we have other fragments but no head, see if we are complete with the head
if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
// We have all fragments -- assemble and process full Packet
//TRACE("packet %.16llx is complete, assembling and processing...",pid);
// packet already contains head, so append fragments
for(unsigned int f=1;fsecond.totalFragments;++f)
packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
_defragQueue.erase(dqe);
if (!packet->tryDecode(RR)) {
Mutex::Lock _l(_rxQueue_m);
_rxQueue.push_back(packet);
}
} else {
// Still waiting on more fragments, so queue the head
dqe->second.frag0 = packet;
}
} // else this is a duplicate head, ignore
} else {
// Packet is unfragmented, so just process it
if (!packet->tryDecode(RR)) {
Mutex::Lock _l(_rxQueue_m);
_rxQueue.push_back(packet);
}
}
}
void Switch::_handleBeacon(const InetAddress &fromAddr,int linkDesperation,const Buffer &data)
{
Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
if (beaconAddr == RR->identity.address())
return;
SharedPtr peer(RR->topology->getPeer(beaconAddr));
if (peer) {
const uint64_t now = RR->node->now();
if ((now - _lastBeacon) >= ZT_MIN_BEACON_RESPONSE_INTERVAL) {
_lastBeacon = now;
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
outp.armor(peer->key(),false);
RR->node->putPacket(fromAddr,outp.data(),outp.size(),linkDesperation);
}
}
}
Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
{
SharedPtr supernode(RR->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
if (supernode) {
Packet outp(supernode->address(),RR->identity.address(),Packet::VERB_WHOIS);
addr.appendTo(outp);
outp.armor(supernode->key(),true);
if (supernode->send(RR,outp.data(),outp.size(),RR->node->now()))
return supernode->address();
}
return Address();
}
bool Switch::_trySend(const Packet &packet,bool encrypt)
{
SharedPtr peer(RR->topology->getPeer(packet.destination()));
if (peer) {
const uint64_t now = RR->node->now();
Path *viaPath = peer->getBestPath(now);
if (!viaPath) {
SharedPtr sn(RR->topology->getBestSupernode());
if (!(sn)||(!(viaPath = sn->getBestPath(now))))
return false;
}
Packet tmp(packet);
unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
tmp.setFragmented(chunkSize < tmp.size());
tmp.armor(peer->key(),encrypt);
if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
if (chunkSize < tmp.size()) {
// Too big for one bite, fragment the rest
unsigned int fragStart = chunkSize;
unsigned int remaining = tmp.size() - chunkSize;
unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
++fragsRemaining;
unsigned int totalFragments = fragsRemaining + 1;
for(unsigned int fno=1;fnosend(RR,frag.data(),frag.size(),now);
fragStart += chunkSize;
remaining -= chunkSize;
}
}
return true;
}
} else {
requestWhois(packet.destination());
}
return false;
}
} // namespace ZeroTier