/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2011-2014 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include "Topology.hpp" #include "NodeConfig.hpp" #include "CMWC4096.hpp" #define ZT_PEER_WRITE_BUF_SIZE 131072 namespace ZeroTier { Topology::Topology(const RuntimeEnvironment *renv,bool enablePermanentIdCaching) : _r(renv), _amSupernode(false) { if (enablePermanentIdCaching) _idCacheBase = (_r->homePath + ZT_PATH_SEPARATOR_S + "iddb.d"); _loadPeers(); } Topology::~Topology() { clean(); _dumpPeers(); } void Topology::setSupernodes(const std::map< Identity,std::vector > &sn) { Mutex::Lock _l(_supernodes_m); _supernodes = sn; _supernodeAddresses.clear(); _supernodePeers.clear(); uint64_t now = Utils::now(); for(std::map< Identity,std::vector >::const_iterator i(sn.begin());i!=sn.end();++i) { if (i->first != _r->identity) { SharedPtr p(getPeer(i->first.address())); if (!p) p = addPeer(SharedPtr(new Peer(_r->identity,i->first))); for(std::vector::const_iterator j(i->second.begin());j!=i->second.end();++j) p->setPathAddress(*j,true); p->setLastUsed(now); _supernodePeers.push_back(p); } _supernodeAddresses.insert(i->first.address()); } _amSupernode = (_supernodes.find(_r->identity) != _supernodes.end()); } SharedPtr Topology::addPeer(const SharedPtr &peer) { if (peer->address() == _r->identity.address()) { TRACE("BUG: addNewPeer() caught and ignored attempt to add peer for self"); throw std::logic_error("cannot add peer for self"); } uint64_t now = Utils::now(); Mutex::Lock _l(_activePeers_m); SharedPtr p(_activePeers.insert(std::pair< Address,SharedPtr >(peer->address(),peer)).first->second); p->setLastUsed(now); saveIdentity(p->identity()); return p; } SharedPtr Topology::getPeer(const Address &zta) { if (zta == _r->identity.address()) { TRACE("BUG: ignored attempt to getPeer() for self, returned NULL"); return SharedPtr(); } uint64_t now = Utils::now(); Mutex::Lock _l(_activePeers_m); std::map< Address,SharedPtr >::const_iterator ap(_activePeers.find(zta)); if ((ap != _activePeers.end())&&(ap->second)) { ap->second->setLastUsed(now); return ap->second; } return SharedPtr(); } Identity Topology::getIdentity(const Address &zta) { SharedPtr p(getPeer(zta)); if (p) return p->identity(); if (_idCacheBase.length()) { std::string idcPath(_idCacheBase + ZT_PATH_SEPARATOR_S + zta.toString()); std::string ids; if (Utils::readFile(idcPath.c_str(),ids)) { try { return Identity(ids); } catch ( ... ) {} // ignore invalid IDs } } return Identity(); } void Topology::saveIdentity(const Identity &id) { if ((id)&&(_idCacheBase.length())) { std::string idcPath(_idCacheBase + ZT_PATH_SEPARATOR_S + id.address().toString()); if (!Utils::fileExists(idcPath.c_str())) Utils::writeFile(idcPath.c_str(),id.toString(false)); } } SharedPtr Topology::getBestSupernode(const Address *avoid,unsigned int avoidCount,bool strictAvoid) const { SharedPtr bestSupernode; unsigned int l,bestSupernodeLatency = 65536; uint64_t now = Utils::now(); uint64_t lds,ldr; Mutex::Lock _l(_supernodes_m); // First look for a best supernode by comparing latencies, but exclude // supernodes that have not responded to direct messages in order to // try to exclude any that are dead or unreachable. for(std::vector< SharedPtr >::const_iterator sn(_supernodePeers.begin());sn!=_supernodePeers.end();) { // Skip explicitly avoided relays for(unsigned int i=0;iaddress()) goto keep_searching_for_supernodes; } // Skip possibly comatose or unreachable relays lds = (*sn)->lastDirectSend(); ldr = (*sn)->lastDirectReceive(); if ((lds)&&(lds > ldr)&&((lds - ldr) > ZT_PEER_RELAY_CONVERSATION_LATENCY_THRESHOLD)) goto keep_searching_for_supernodes; if ((*sn)->hasActiveDirectPath(now)) { l = (*sn)->latency(); if (bestSupernode) { if ((l)&&(l < bestSupernodeLatency)) { bestSupernodeLatency = l; bestSupernode = *sn; } } else { if (l) bestSupernodeLatency = l; bestSupernode = *sn; } } keep_searching_for_supernodes: ++sn; } if (bestSupernode) { bestSupernode->setLastUsed(now); return bestSupernode; } else if (strictAvoid) return SharedPtr(); // If we have nothing from above, just pick one without avoidance criteria. for(std::vector< SharedPtr >::const_iterator sn=_supernodePeers.begin();sn!=_supernodePeers.end();++sn) { if ((*sn)->hasActiveDirectPath(now)) { unsigned int l = (*sn)->latency(); if (bestSupernode) { if ((l)&&(l < bestSupernodeLatency)) { bestSupernodeLatency = l; bestSupernode = *sn; } } else { if (l) bestSupernodeLatency = l; bestSupernode = *sn; } } } if (bestSupernode) bestSupernode->setLastUsed(now); return bestSupernode; } void Topology::clean() { uint64_t now = Utils::now(); Mutex::Lock _l(_activePeers_m); Mutex::Lock _l2(_supernodes_m); for(std::map< Address,SharedPtr >::iterator p(_activePeers.begin());p!=_activePeers.end();) { if (((now - p->second->lastUsed()) >= ZT_PEER_IN_MEMORY_EXPIRATION)&&(!_supernodeAddresses.count(p->second->address()))) _activePeers.erase(p++); else ++p; } } void Topology::_dumpPeers() { Buffer buf; std::string pdpath(_r->homePath + ZT_PATH_SEPARATOR_S + "peers.persist"); Mutex::Lock _l(_activePeers_m); FILE *pd = fopen(pdpath.c_str(),"wb"); if (!pd) return; if (fwrite("ZTPD0",5,1,pd) != 1) { fclose(pd); Utils::rm(pdpath); return; } for(std::map< Address,SharedPtr >::iterator p(_activePeers.begin());p!=_activePeers.end();++p) { try { p->second->serialize(buf); if (buf.size() >= (ZT_PEER_WRITE_BUF_SIZE / 2)) { if (fwrite(buf.data(),buf.size(),1,pd) != 1) { fclose(pd); Utils::rm(pdpath); return; } buf.clear(); } } catch ( ... ) { fclose(pd); Utils::rm(pdpath); return; } } if (buf.size()) { if (fwrite(buf.data(),buf.size(),1,pd) != 1) { fclose(pd); Utils::rm(pdpath); return; } } fclose(pd); Utils::lockDownFile(pdpath.c_str(),false); } void Topology::_loadPeers() { Buffer buf; std::string pdpath(_r->homePath + ZT_PATH_SEPARATOR_S + "peers.persist"); Mutex::Lock _l(_activePeers_m); _activePeers.clear(); FILE *pd = fopen(pdpath.c_str(),"rb"); if (!pd) return; try { char magic[5]; if ((fread(magic,5,1,pd) == 1)&&(!memcmp("ZTPD0",magic,5))) { long rlen = 0; do { long rlen = (long)fread(buf.data() + buf.size(),1,ZT_PEER_WRITE_BUF_SIZE - buf.size(),pd); if (rlen < 0) rlen = 0; buf.setSize(buf.size() + (unsigned int)rlen); unsigned int ptr = 0; while ((ptr < (ZT_PEER_WRITE_BUF_SIZE / 2))&&(ptr < buf.size())) { SharedPtr p(new Peer()); ptr += p->deserialize(buf,ptr); _activePeers[p->address()] = p; saveIdentity(p->identity()); } if (ptr) { memmove(buf.data(),buf.data() + ptr,buf.size() - ptr); buf.setSize(buf.size() - ptr); } } while (rlen > 0); } } catch ( ... ) { _activePeers.clear(); } fclose(pd); Utils::rm(pdpath); } } // namespace ZeroTier