/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include "Constants.hpp"
#include "Topology.hpp"
#include "RuntimeEnvironment.hpp"
#include "Defaults.hpp"
#include "Dictionary.hpp"
#include "Node.hpp"
namespace ZeroTier {
Topology::Topology(const RuntimeEnvironment *renv) :
RR(renv),
_amRoot(false)
{
}
Topology::~Topology()
{
}
void Topology::setRootServers(const std::map< Identity,std::vector > &sn)
{
Mutex::Lock _l(_lock);
if (_roots == sn)
return; // no change
_roots = sn;
_rootAddresses.clear();
_rootPeers.clear();
const uint64_t now = RR->node->now();
for(std::map< Identity,std::vector >::const_iterator i(sn.begin());i!=sn.end();++i) {
if (i->first != RR->identity) { // do not add self as a peer
SharedPtr &p = _activePeers[i->first.address()];
if (!p)
p = SharedPtr(new Peer(RR->identity,i->first));
for(std::vector::const_iterator j(i->second.begin());j!=i->second.end();++j)
p->addPath(Path(*j,true));
p->use(now);
_rootPeers.push_back(p);
}
_rootAddresses.push_back(i->first.address());
}
std::sort(_rootAddresses.begin(),_rootAddresses.end());
_amRoot = (_roots.find(RR->identity) != _roots.end());
}
void Topology::setRootServers(const Dictionary &sn)
{
std::map< Identity,std::vector > m;
for(Dictionary::const_iterator d(sn.begin());d!=sn.end();++d) {
if ((d->first.length() == ZT_ADDRESS_LENGTH_HEX)&&(d->second.length() > 0)) {
try {
Dictionary snspec(d->second);
std::vector &a = m[Identity(snspec.get("id"))];
std::string udp(snspec.get("udp",std::string()));
if (udp.length() > 0)
a.push_back(InetAddress(udp));
} catch ( ... ) {
TRACE("root server list contained invalid entry for: %s",d->first.c_str());
}
}
}
this->setRootServers(m);
}
SharedPtr Topology::addPeer(const SharedPtr &peer)
{
if (peer->address() == RR->identity.address()) {
TRACE("BUG: addNewPeer() caught and ignored attempt to add peer for self");
throw std::logic_error("cannot add peer for self");
}
const uint64_t now = RR->node->now();
Mutex::Lock _l(_lock);
SharedPtr p(_activePeers.insert(std::pair< Address,SharedPtr >(peer->address(),peer)).first->second);
p->use(now);
_saveIdentity(p->identity());
return p;
}
SharedPtr Topology::getPeer(const Address &zta)
{
if (zta == RR->identity.address()) {
TRACE("BUG: ignored attempt to getPeer() for self, returned NULL");
return SharedPtr();
}
const uint64_t now = RR->node->now();
Mutex::Lock _l(_lock);
SharedPtr &ap = _activePeers[zta];
if (ap) {
ap->use(now);
return ap;
}
Identity id(_getIdentity(zta));
if (id) {
try {
ap = SharedPtr(new Peer(RR->identity,id));
ap->use(now);
return ap;
} catch ( ... ) {} // invalid identity?
}
_activePeers.erase(zta);
return SharedPtr();
}
SharedPtr Topology::getBestRoot(const Address *avoid,unsigned int avoidCount,bool strictAvoid)
{
SharedPtr bestRoot;
const uint64_t now = RR->node->now();
Mutex::Lock _l(_lock);
if (_amRoot) {
/* If I am a root server, the "best" root server is the one whose address
* is numerically greater than mine (with wrap at top of list). This
* causes packets searching for a route to pretty much literally
* circumnavigate the globe rather than bouncing between just two. */
if (_rootAddresses.size() > 1) { // gotta be one other than me for this to work
std::vector::const_iterator sna(std::find(_rootAddresses.begin(),_rootAddresses.end(),RR->identity.address()));
if (sna != _rootAddresses.end()) { // sanity check -- _amRoot should've been false in this case
for(;;) {
if (++sna == _rootAddresses.end())
sna = _rootAddresses.begin(); // wrap around at end
if (*sna != RR->identity.address()) { // pick one other than us -- starting from me+1 in sorted set order
std::map< Address,SharedPtr >::const_iterator p(_activePeers.find(*sna));
if ((p != _activePeers.end())&&(p->second->hasActiveDirectPath(now))) {
bestRoot = p->second;
break;
}
}
}
}
}
} else {
/* If I am not a root server, the best root server is the active one with
* the lowest latency. */
unsigned int l,bestLatency = 65536;
uint64_t lds,ldr;
// First look for a best root by comparing latencies, but exclude
// root servers that have not responded to direct messages in order to
// try to exclude any that are dead or unreachable.
for(std::vector< SharedPtr >::const_iterator sn(_rootPeers.begin());sn!=_rootPeers.end();) {
// Skip explicitly avoided relays
for(unsigned int i=0;iaddress())
goto keep_searching_for_roots;
}
// Skip possibly comatose or unreachable relays
lds = (*sn)->lastDirectSend();
ldr = (*sn)->lastDirectReceive();
if ((lds)&&(lds > ldr)&&((lds - ldr) > ZT_PEER_RELAY_CONVERSATION_LATENCY_THRESHOLD))
goto keep_searching_for_roots;
if ((*sn)->hasActiveDirectPath(now)) {
l = (*sn)->latency();
if (bestRoot) {
if ((l)&&(l < bestLatency)) {
bestLatency = l;
bestRoot = *sn;
}
} else {
if (l)
bestLatency = l;
bestRoot = *sn;
}
}
keep_searching_for_roots:
++sn;
}
if (bestRoot) {
bestRoot->use(now);
return bestRoot;
} else if (strictAvoid)
return SharedPtr();
// If we have nothing from above, just pick one without avoidance criteria.
for(std::vector< SharedPtr >::const_iterator sn=_rootPeers.begin();sn!=_rootPeers.end();++sn) {
if ((*sn)->hasActiveDirectPath(now)) {
unsigned int l = (*sn)->latency();
if (bestRoot) {
if ((l)&&(l < bestLatency)) {
bestLatency = l;
bestRoot = *sn;
}
} else {
if (l)
bestLatency = l;
bestRoot = *sn;
}
}
}
}
if (bestRoot)
bestRoot->use(now);
return bestRoot;
}
bool Topology::isRoot(const Identity &id) const
throw()
{
Mutex::Lock _l(_lock);
return (_roots.count(id) != 0);
}
void Topology::clean(uint64_t now)
{
Mutex::Lock _l(_lock);
for(std::map< Address,SharedPtr >::iterator p(_activePeers.begin());p!=_activePeers.end();) {
if (((now - p->second->lastUsed()) >= ZT_PEER_IN_MEMORY_EXPIRATION)&&(std::find(_rootAddresses.begin(),_rootAddresses.end(),p->first) == _rootAddresses.end())) {
_activePeers.erase(p++);
} else ++p;
}
}
bool Topology::authenticateRootTopology(const Dictionary &rt)
{
try {
std::string signer(rt.signingIdentity());
if (!signer.length())
return false;
Identity signerId(signer);
std::map< Address,Identity >::const_iterator authority(ZT_DEFAULTS.rootTopologyAuthorities.find(signerId.address()));
if (authority == ZT_DEFAULTS.rootTopologyAuthorities.end())
return false;
if (signerId != authority->second)
return false;
return rt.verify(authority->second);
} catch ( ... ) {
return false;
}
}
Identity Topology::_getIdentity(const Address &zta)
{
char p[128];
Utils::snprintf(p,sizeof(p),"iddb.d/%.10llx",(unsigned long long)zta.toInt());
std::string ids(RR->node->dataStoreGet(p));
if (ids.length() > 0) {
try {
return Identity(ids);
} catch ( ... ) {} // ignore invalid IDs
}
return Identity();
}
void Topology::_saveIdentity(const Identity &id)
{
if (id) {
char p[128];
Utils::snprintf(p,sizeof(p),"iddb.d/%.10llx",(unsigned long long)id.address().toInt());
RR->node->dataStorePut(p,id.toString(false),false);
}
}
} // namespace ZeroTier