/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../node/Constants.hpp" #include "../node/Utils.hpp" #include "../node/Mutex.hpp" #include "BSDEthernetTap.hpp" #define ZT_BASE32_CHARS "0123456789abcdefghijklmnopqrstuv" // ff:ff:ff:ff:ff:ff with no ADI static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff),0); namespace ZeroTier { BSDEthernetTap::BSDEthernetTap( const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *desiredDevice, const char *friendlyName, void (*handler)(void *,const MAC &,const MAC &,unsigned int,const Buffer<4096> &), void *arg) : EthernetTap("BSDEthernetTap",mac,mtu,metric), _handler(handler), _arg(arg), _mtu(mtu), _metric(metric), _fd(0), _enabled(true) { static Mutex globalTapCreateLock; char devpath[64],ethaddr[64],mtustr[32],metstr[32],tmpdevname[32]; struct stat stattmp; // On FreeBSD at least we can rename, so use nwid to generate a deterministic unique zt#### name using base32 // As a result we don't use desiredDevice _dev = "zt"; _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 60) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 55) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 50) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 45) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 40) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 35) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 30) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 25) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 20) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 15) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 10) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)((nwid >> 5) & 0x1f)]); _dev.push_back(ZT_BASE32_CHARS[(unsigned long)(nwid & 0x1f)]); Mutex::Lock _gl(globalTapCreateLock); if (mtu > 2800) throw std::runtime_error("max tap MTU is 2800"); // On BSD we create taps and they can have high numbers, so use ones starting // at 9993 to not conflict with other stuff. Then we rename it to zt std::map devFiles(Utils::listDirectory("/dev")); for(int i=9993;i<(9993+128);++i) { Utils::snprintf(tmpdevname,sizeof(tmpdevname),"tap%d",i); Utils::snprintf(devpath,sizeof(devpath),"/dev/%s",tmpdevname); if (devFiles.count(std::string(tmpdevname)) == 0) { long cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",tmpdevname,"create",(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); } else throw std::runtime_error("fork() failed"); if (!stat(devpath,&stattmp)) { cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",tmpdevname,"name",_dev.c_str(),(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); if (exitcode) throw std::runtime_error("ifconfig rename operation failed"); } else throw std::runtime_error("fork() failed"); _fd = ::open(devpath,O_RDWR); if (_fd > 0) break; else throw std::runtime_error("unable to open created tap device"); } else { throw std::runtime_error("cannot find /dev node for newly created tap device"); } } } if (_fd <= 0) throw std::runtime_error("unable to open TAP device or no more devices available"); if (fcntl(_fd,F_SETFL,fcntl(_fd,F_GETFL) & ~O_NONBLOCK) == -1) { ::close(_fd); throw std::runtime_error("unable to set flags on file descriptor for TAP device"); } // Configure MAC address and MTU, bring interface up Utils::snprintf(ethaddr,sizeof(ethaddr),"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",(int)mac[0],(int)mac[1],(int)mac[2],(int)mac[3],(int)mac[4],(int)mac[5]); Utils::snprintf(mtustr,sizeof(mtustr),"%u",_mtu); Utils::snprintf(metstr,sizeof(metstr),"%u",_metric); long cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),"lladdr",ethaddr,"mtu",mtustr,"metric",metstr,"up",(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); if (exitcode) { ::close(_fd); throw std::runtime_error("ifconfig failure setting link-layer address and activating tap interface"); } } // Set close-on-exec so that devices cannot persist if we fork/exec for update fcntl(_fd,F_SETFD,fcntl(_fd,F_GETFD) | FD_CLOEXEC); ::pipe(_shutdownSignalPipe); _thread = Thread::start(this); } BSDEthernetTap::~BSDEthernetTap() { ::write(_shutdownSignalPipe[1],"\0",1); // causes thread to exit Thread::join(_thread); ::close(_fd); ::close(_shutdownSignalPipe[0]); ::close(_shutdownSignalPipe[1]); long cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),"destroy",(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); } } void BSDEthernetTap::setEnabled(bool en) { _enabled = en; // TODO: interface status change } bool BSDEthernetTap::enabled() const { return _enabled; } static bool ___removeIp(const std::string &_dev,const InetAddress &ip) { long cpid = (long)vfork(); if (cpid == 0) { execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),"inet",ip.toIpString().c_str(),"-alias",(const char *)0); _exit(-1); } else if (cpid > 0) { int exitcode = -1; waitpid(cpid,&exitcode,0); return (exitcode == 0); } return false; // never reached, make compiler shut up about return value } bool BSDEthernetTap::addIP(const InetAddress &ip) { if (!ip) return false; std::set allIps(ips()); if (allIps.count(ip) > 0) return true; // IP/netmask already assigned // Remove and reconfigure if address is the same but netmask is different for(std::set::iterator i(allIps.begin());i!=allIps.end();++i) { if ((i->ipsEqual(ip))&&(i->netmaskBits() != ip.netmaskBits())) { if (___removeIp(_dev,*i)) break; } } long cpid = (long)vfork(); if (cpid == 0) { ::execl("/sbin/ifconfig","/sbin/ifconfig",_dev.c_str(),ip.isV4() ? "inet" : "inet6",ip.toString().c_str(),"alias",(const char *)0); ::_exit(-1); } else if (cpid > 0) { int exitcode = -1; ::waitpid(cpid,&exitcode,0); return (exitcode == 0); } return false; } bool BSDEthernetTap::removeIP(const InetAddress &ip) { if (ips().count(ip) > 0) { if (___removeIp(_dev,ip)) return true; } return false; } std::set BSDEthernetTap::ips() const { struct ifaddrs *ifa = (struct ifaddrs *)0; if (getifaddrs(&ifa)) return std::set(); std::set r; struct ifaddrs *p = ifa; while (p) { if ((!strcmp(p->ifa_name,_dev.c_str()))&&(p->ifa_addr)&&(p->ifa_netmask)&&(p->ifa_addr->sa_family == p->ifa_netmask->sa_family)) { switch(p->ifa_addr->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)p->ifa_addr; struct sockaddr_in *nm = (struct sockaddr_in *)p->ifa_netmask; r.insert(InetAddress(&(sin->sin_addr.s_addr),4,Utils::countBits((uint32_t)nm->sin_addr.s_addr))); } break; case AF_INET6: { struct sockaddr_in6 *sin = (struct sockaddr_in6 *)p->ifa_addr; struct sockaddr_in6 *nm = (struct sockaddr_in6 *)p->ifa_netmask; uint32_t b[4]; memcpy(b,nm->sin6_addr.s6_addr,sizeof(b)); r.insert(InetAddress(sin->sin6_addr.s6_addr,16,Utils::countBits(b[0]) + Utils::countBits(b[1]) + Utils::countBits(b[2]) + Utils::countBits(b[3]))); } break; } } p = p->ifa_next; } if (ifa) freeifaddrs(ifa); return r; } void BSDEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { char putBuf[4096]; if ((_fd > 0)&&(len <= _mtu)&&(_enabled)) { to.copyTo(putBuf,6); from.copyTo(putBuf + 6,6); *((uint16_t *)(putBuf + 12)) = htons((uint16_t)etherType); memcpy(putBuf + 14,data,len); len += 14; ::write(_fd,putBuf,len); } } std::string BSDEthernetTap::deviceName() const { return _dev; } void BSDEthernetTap::setFriendlyName(const char *friendlyName) { } bool BSDEthernetTap::updateMulticastGroups(std::set &groups) { std::set newGroups; struct ifmaddrs *ifmap = (struct ifmaddrs *)0; if (!getifmaddrs(&ifmap)) { struct ifmaddrs *p = ifmap; while (p) { if (p->ifma_addr->sa_family == AF_LINK) { struct sockaddr_dl *in = (struct sockaddr_dl *)p->ifma_name; struct sockaddr_dl *la = (struct sockaddr_dl *)p->ifma_addr; if ((la->sdl_alen == 6)&&(in->sdl_nlen <= _dev.length())&&(!memcmp(_dev.data(),in->sdl_data,in->sdl_nlen))) newGroups.insert(MulticastGroup(MAC(la->sdl_data + la->sdl_nlen,6),0)); } p = p->ifma_next; } freeifmaddrs(ifmap); } { std::set allIps(ips()); for(std::set::const_iterator i(allIps.begin());i!=allIps.end();++i) newGroups.insert(MulticastGroup::deriveMulticastGroupForAddressResolution(*i)); } bool changed = false; for(std::set::iterator mg(newGroups.begin());mg!=newGroups.end();++mg) { if (!groups.count(*mg)) { groups.insert(*mg); changed = true; } } for(std::set::iterator mg(groups.begin());mg!=groups.end();) { if ((!newGroups.count(*mg))&&(*mg != _blindWildcardMulticastGroup)) { groups.erase(mg++); changed = true; } else ++mg; } return changed; } bool BSDEthernetTap::injectPacketFromHost(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { return false; } void BSDEthernetTap::threadMain() throw() { fd_set readfds,nullfds; MAC to,from; int n,nfds,r; char getBuf[8194]; Buffer<4096> data; // Wait for a moment after startup -- wait for Network to finish // constructing itself. Thread::sleep(500); FD_ZERO(&readfds); FD_ZERO(&nullfds); nfds = (int)std::max(_shutdownSignalPipe[0],_fd) + 1; r = 0; for(;;) { FD_SET(_shutdownSignalPipe[0],&readfds); FD_SET(_fd,&readfds); select(nfds,&readfds,&nullfds,&nullfds,(struct timeval *)0); if (FD_ISSET(_shutdownSignalPipe[0],&readfds)) // writes to shutdown pipe terminate thread break; if (FD_ISSET(_fd,&readfds)) { n = (int)::read(_fd,getBuf + r,sizeof(getBuf) - r); if (n < 0) { if ((errno != EINTR)&&(errno != ETIMEDOUT)) break; } else { // Some tap drivers like to send the ethernet frame and the // payload in two chunks, so handle that by accumulating // data until we have at least a frame. r += n; if (r > 14) { if (r > ((int)_mtu + 14)) // sanity check for weird TAP behavior on some platforms r = _mtu + 14; if (_enabled) { to.setTo(getBuf,6); from.setTo(getBuf + 6,6); unsigned int etherType = ntohs(((const uint16_t *)getBuf)[6]); data.copyFrom(getBuf + 14,(unsigned int)r - 14); _handler(_arg,from,to,etherType,data); } r = 0; } } } } } } // namespace ZeroTier