/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../node/Constants.hpp" #include "../node/Utils.hpp" #include "../node/Mutex.hpp" #include "WindowsEthernetTap.hpp" #include "OSUtils.hpp" #include "..\windows\TapDriver6\tap-windows.h" // Create a fake unused default route to force detection of network type on networks without gateways #define ZT_WINDOWS_CREATE_FAKE_DEFAULT_ROUTE // Function signatures of dynamically loaded functions, from newdev.h, setupapi.h, and cfgmgr32.h typedef BOOL (WINAPI *UpdateDriverForPlugAndPlayDevicesA_t)(_In_opt_ HWND hwndParent,_In_ LPCSTR HardwareId,_In_ LPCSTR FullInfPath,_In_ DWORD InstallFlags,_Out_opt_ PBOOL bRebootRequired); typedef BOOL (WINAPI *SetupDiGetINFClassA_t)(_In_ PCSTR InfName,_Out_ LPGUID ClassGuid,_Out_writes_(ClassNameSize) PSTR ClassName,_In_ DWORD ClassNameSize,_Out_opt_ PDWORD RequiredSize); typedef HDEVINFO (WINAPI *SetupDiCreateDeviceInfoList_t)(_In_opt_ CONST GUID *ClassGuid,_In_opt_ HWND hwndParent); typedef BOOL (WINAPI *SetupDiCreateDeviceInfoA_t)(_In_ HDEVINFO DeviceInfoSet,_In_ PCSTR DeviceName,_In_ CONST GUID *ClassGuid,_In_opt_ PCSTR DeviceDescription,_In_opt_ HWND hwndParent,_In_ DWORD CreationFlags,_Out_opt_ PSP_DEVINFO_DATA DeviceInfoData); typedef BOOL (WINAPI *SetupDiSetDeviceRegistryPropertyA_t)(_In_ HDEVINFO DeviceInfoSet,_Inout_ PSP_DEVINFO_DATA DeviceInfoData,_In_ DWORD Property,_In_reads_bytes_opt_(PropertyBufferSize) CONST BYTE *PropertyBuffer,_In_ DWORD PropertyBufferSize); typedef BOOL (WINAPI *SetupDiCallClassInstaller_t)(_In_ DI_FUNCTION InstallFunction,_In_ HDEVINFO DeviceInfoSet,_In_opt_ PSP_DEVINFO_DATA DeviceInfoData); typedef BOOL (WINAPI *SetupDiDestroyDeviceInfoList_t)(_In_ HDEVINFO DeviceInfoSet); typedef HDEVINFO (WINAPI *SetupDiGetClassDevsExA_t)(_In_opt_ CONST GUID *ClassGuid,_In_opt_ PCSTR Enumerator,_In_opt_ HWND hwndParent,_In_ DWORD Flags,_In_opt_ HDEVINFO DeviceInfoSet,_In_opt_ PCSTR MachineName,_Reserved_ PVOID Reserved); typedef BOOL (WINAPI *SetupDiOpenDeviceInfoA_t)(_In_ HDEVINFO DeviceInfoSet,_In_ PCSTR DeviceInstanceId,_In_opt_ HWND hwndParent,_In_ DWORD OpenFlags,_Out_opt_ PSP_DEVINFO_DATA DeviceInfoData); typedef BOOL (WINAPI *SetupDiEnumDeviceInfo_t)(_In_ HDEVINFO DeviceInfoSet,_In_ DWORD MemberIndex,_Out_ PSP_DEVINFO_DATA DeviceInfoData); typedef BOOL (WINAPI *SetupDiSetClassInstallParamsA_t)(_In_ HDEVINFO DeviceInfoSet,_In_opt_ PSP_DEVINFO_DATA DeviceInfoData,_In_reads_bytes_opt_(ClassInstallParamsSize) PSP_CLASSINSTALL_HEADER ClassInstallParams,_In_ DWORD ClassInstallParamsSize); typedef CONFIGRET (WINAPI *CM_Get_Device_ID_ExA_t)(_In_ DEVINST dnDevInst,_Out_writes_(BufferLen) PSTR Buffer,_In_ ULONG BufferLen,_In_ ULONG ulFlags,_In_opt_ HMACHINE hMachine); typedef BOOL (WINAPI *SetupDiGetDeviceInstanceIdA_t)(_In_ HDEVINFO DeviceInfoSet,_In_ PSP_DEVINFO_DATA DeviceInfoData,_Out_writes_opt_(DeviceInstanceIdSize) PSTR DeviceInstanceId,_In_ DWORD DeviceInstanceIdSize,_Out_opt_ PDWORD RequiredSize); namespace ZeroTier { namespace { // Static/singleton class that when initialized loads a bunch of environment information and a few dynamically loaded DLLs class WindowsEthernetTapEnv { public: WindowsEthernetTapEnv() { #ifdef _WIN64 is64Bit = TRUE; tapDriverPath = "\\tap-windows\\x64\\zttap300.inf"; #else is64Bit = FALSE; IsWow64Process(GetCurrentProcess(),&is64Bit); if (is64Bit) { fprintf(stderr,"FATAL: you must use the 64-bit ZeroTier One service on 64-bit Windows systems\r\n"); _exit(1); } tapDriverPath = "\\tap-windows\\x86\\zttap300.inf"; #endif tapDriverName = "zttap300"; setupApiMod = LoadLibraryA("setupapi.dll"); if (!setupApiMod) { fprintf(stderr,"FATAL: unable to dynamically load setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiGetINFClassA = (SetupDiGetINFClassA_t)GetProcAddress(setupApiMod,"SetupDiGetINFClassA"))) { fprintf(stderr,"FATAL: SetupDiGetINFClassA not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiCreateDeviceInfoList = (SetupDiCreateDeviceInfoList_t)GetProcAddress(setupApiMod,"SetupDiCreateDeviceInfoList"))) { fprintf(stderr,"FATAL: SetupDiCreateDeviceInfoList not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiCreateDeviceInfoA = (SetupDiCreateDeviceInfoA_t)GetProcAddress(setupApiMod,"SetupDiCreateDeviceInfoA"))) { fprintf(stderr,"FATAL: SetupDiCreateDeviceInfoA not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiSetDeviceRegistryPropertyA = (SetupDiSetDeviceRegistryPropertyA_t)GetProcAddress(setupApiMod,"SetupDiSetDeviceRegistryPropertyA"))) { fprintf(stderr,"FATAL: SetupDiSetDeviceRegistryPropertyA not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiCallClassInstaller = (SetupDiCallClassInstaller_t)GetProcAddress(setupApiMod,"SetupDiCallClassInstaller"))) { fprintf(stderr,"FATAL: SetupDiCallClassInstaller not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiDestroyDeviceInfoList = (SetupDiDestroyDeviceInfoList_t)GetProcAddress(setupApiMod,"SetupDiDestroyDeviceInfoList"))) { fprintf(stderr,"FATAL: SetupDiDestroyDeviceInfoList not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiGetClassDevsExA = (SetupDiGetClassDevsExA_t)GetProcAddress(setupApiMod,"SetupDiGetClassDevsExA"))) { fprintf(stderr,"FATAL: SetupDiGetClassDevsExA not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiOpenDeviceInfoA = (SetupDiOpenDeviceInfoA_t)GetProcAddress(setupApiMod,"SetupDiOpenDeviceInfoA"))) { fprintf(stderr,"FATAL: SetupDiOpenDeviceInfoA not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiEnumDeviceInfo = (SetupDiEnumDeviceInfo_t)GetProcAddress(setupApiMod,"SetupDiEnumDeviceInfo"))) { fprintf(stderr,"FATAL: SetupDiEnumDeviceInfo not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiSetClassInstallParamsA = (SetupDiSetClassInstallParamsA_t)GetProcAddress(setupApiMod,"SetupDiSetClassInstallParamsA"))) { fprintf(stderr,"FATAL: SetupDiSetClassInstallParamsA not found in setupapi.dll\r\n"); _exit(1); } if (!(this->SetupDiGetDeviceInstanceIdA = (SetupDiGetDeviceInstanceIdA_t)GetProcAddress(setupApiMod,"SetupDiGetDeviceInstanceIdA"))) { fprintf(stderr,"FATAL: SetupDiGetDeviceInstanceIdA not found in setupapi.dll\r\n"); _exit(1); } newDevMod = LoadLibraryA("newdev.dll"); if (!newDevMod) { fprintf(stderr,"FATAL: unable to dynamically load newdev.dll\r\n"); _exit(1); } if (!(this->UpdateDriverForPlugAndPlayDevicesA = (UpdateDriverForPlugAndPlayDevicesA_t)GetProcAddress(newDevMod,"UpdateDriverForPlugAndPlayDevicesA"))) { fprintf(stderr,"FATAL: UpdateDriverForPlugAndPlayDevicesA not found in newdev.dll\r\n"); _exit(1); } cfgMgrMod = LoadLibraryA("cfgmgr32.dll"); if (!cfgMgrMod) { fprintf(stderr,"FATAL: unable to dynamically load cfgmgr32.dll\r\n"); _exit(1); } if (!(this->CM_Get_Device_ID_ExA = (CM_Get_Device_ID_ExA_t)GetProcAddress(cfgMgrMod,"CM_Get_Device_ID_ExA"))) { fprintf(stderr,"FATAL: CM_Get_Device_ID_ExA not found in cfgmgr32.dll\r\n"); _exit(1); } } BOOL is64Bit; // is the system 64-bit, regardless of whether this binary is or not std::string tapDriverPath; std::string tapDriverName; UpdateDriverForPlugAndPlayDevicesA_t UpdateDriverForPlugAndPlayDevicesA; SetupDiGetINFClassA_t SetupDiGetINFClassA; SetupDiCreateDeviceInfoList_t SetupDiCreateDeviceInfoList; SetupDiCreateDeviceInfoA_t SetupDiCreateDeviceInfoA; SetupDiSetDeviceRegistryPropertyA_t SetupDiSetDeviceRegistryPropertyA; SetupDiCallClassInstaller_t SetupDiCallClassInstaller; SetupDiDestroyDeviceInfoList_t SetupDiDestroyDeviceInfoList; SetupDiGetClassDevsExA_t SetupDiGetClassDevsExA; SetupDiOpenDeviceInfoA_t SetupDiOpenDeviceInfoA; SetupDiEnumDeviceInfo_t SetupDiEnumDeviceInfo; SetupDiSetClassInstallParamsA_t SetupDiSetClassInstallParamsA; SetupDiGetDeviceInstanceIdA_t SetupDiGetDeviceInstanceIdA; CM_Get_Device_ID_ExA_t CM_Get_Device_ID_ExA; private: HMODULE setupApiMod; HMODULE newDevMod; HMODULE cfgMgrMod; }; static const WindowsEthernetTapEnv WINENV; // Only create or delete devices one at a time static Mutex _systemTapInitLock; // Only perform installation or uninstallation options one at a time static Mutex _systemDeviceManagementLock; } // anonymous namespace std::string WindowsEthernetTap::addNewPersistentTapDevice(const char *pathToInf,std::string &deviceInstanceId) { Mutex::Lock _l(_systemDeviceManagementLock); GUID classGuid; char className[4096]; if (!WINENV.SetupDiGetINFClassA(pathToInf,&classGuid,className,sizeof(className),(PDWORD)0)) { return std::string("SetupDiGetINFClassA() failed -- unable to read zttap driver INF file"); } HDEVINFO deviceInfoSet = WINENV.SetupDiCreateDeviceInfoList(&classGuid,(HWND)0); if (deviceInfoSet == INVALID_HANDLE_VALUE) { return std::string("SetupDiCreateDeviceInfoList() failed"); } SP_DEVINFO_DATA deviceInfoData; memset(&deviceInfoData,0,sizeof(deviceInfoData)); deviceInfoData.cbSize = sizeof(deviceInfoData); if (!WINENV.SetupDiCreateDeviceInfoA(deviceInfoSet,className,&classGuid,(PCSTR)0,(HWND)0,DICD_GENERATE_ID,&deviceInfoData)) { WINENV.SetupDiDestroyDeviceInfoList(deviceInfoSet); return std::string("SetupDiCreateDeviceInfoA() failed"); } if (!WINENV.SetupDiSetDeviceRegistryPropertyA(deviceInfoSet,&deviceInfoData,SPDRP_HARDWAREID,(const BYTE *)WINENV.tapDriverName.c_str(),(DWORD)(WINENV.tapDriverName.length() + 1))) { WINENV.SetupDiDestroyDeviceInfoList(deviceInfoSet); return std::string("SetupDiSetDeviceRegistryPropertyA() failed"); } if (!WINENV.SetupDiCallClassInstaller(DIF_REGISTERDEVICE,deviceInfoSet,&deviceInfoData)) { WINENV.SetupDiDestroyDeviceInfoList(deviceInfoSet); return std::string("SetupDiCallClassInstaller(DIF_REGISTERDEVICE) failed"); } // HACK: During upgrades, this can fail while the installer is still running. So make 60 attempts // with a 1s delay between each attempt. bool driverInstalled = false; for(int retryCounter=0;retryCounter<60;++retryCounter) { BOOL rebootRequired = FALSE; if (WINENV.UpdateDriverForPlugAndPlayDevicesA((HWND)0,WINENV.tapDriverName.c_str(),pathToInf,INSTALLFLAG_FORCE|INSTALLFLAG_NONINTERACTIVE,&rebootRequired)) { driverInstalled = true; break; } else Sleep(1000); } if (!driverInstalled) { WINENV.SetupDiDestroyDeviceInfoList(deviceInfoSet); return std::string("UpdateDriverForPlugAndPlayDevices() failed (made 60 attempts)"); } char iidbuf[1024]; DWORD iidReqSize = sizeof(iidbuf); if (WINENV.SetupDiGetDeviceInstanceIdA(deviceInfoSet,&deviceInfoData,iidbuf,sizeof(iidbuf),&iidReqSize)) { deviceInstanceId = iidbuf; } // failure here is not fatal since we only need this on Vista and 2008 -- other versions fill it into the registry automatically WINENV.SetupDiDestroyDeviceInfoList(deviceInfoSet); return std::string(); } std::string WindowsEthernetTap::destroyAllLegacyPersistentTapDevices() { char subkeyName[4096]; char subkeyClass[4096]; char data[4096]; std::set instanceIdPathsToRemove; { HKEY nwAdapters; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002BE10318}",0,KEY_READ|KEY_WRITE,&nwAdapters) != ERROR_SUCCESS) return std::string("Could not open registry key"); for(DWORD subkeyIndex=0;;++subkeyIndex) { DWORD type; DWORD dataLen; DWORD subkeyNameLen = sizeof(subkeyName); DWORD subkeyClassLen = sizeof(subkeyClass); FILETIME lastWriteTime; if (RegEnumKeyExA(nwAdapters,subkeyIndex,subkeyName,&subkeyNameLen,(DWORD *)0,subkeyClass,&subkeyClassLen,&lastWriteTime) == ERROR_SUCCESS) { type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"ComponentId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) { data[dataLen] = '\0'; if ((!strnicmp(data,"zttap",5))&&(WINENV.tapDriverName != data)) { std::string instanceIdPath; type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"DeviceInstanceID",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) instanceIdPath.assign(data,dataLen); if (instanceIdPath.length() != 0) instanceIdPathsToRemove.insert(instanceIdPath); } } } else break; // end of list or failure } RegCloseKey(nwAdapters); } std::string errlist; for(std::set::iterator iidp(instanceIdPathsToRemove.begin());iidp!=instanceIdPathsToRemove.end();++iidp) { std::string err = deletePersistentTapDevice(iidp->c_str()); if (err.length() > 0) { if (errlist.length() > 0) errlist.push_back(','); errlist.append(err); } } return errlist; } std::string WindowsEthernetTap::destroyAllPersistentTapDevices() { char subkeyName[4096]; char subkeyClass[4096]; char data[4096]; std::set instanceIdPathsToRemove; { HKEY nwAdapters; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002BE10318}",0,KEY_READ|KEY_WRITE,&nwAdapters) != ERROR_SUCCESS) return std::string("Could not open registry key"); for(DWORD subkeyIndex=0;;++subkeyIndex) { DWORD type; DWORD dataLen; DWORD subkeyNameLen = sizeof(subkeyName); DWORD subkeyClassLen = sizeof(subkeyClass); FILETIME lastWriteTime; if (RegEnumKeyExA(nwAdapters,subkeyIndex,subkeyName,&subkeyNameLen,(DWORD *)0,subkeyClass,&subkeyClassLen,&lastWriteTime) == ERROR_SUCCESS) { type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"ComponentId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) { data[dataLen] = '\0'; if (!strnicmp(data,"zttap",5)) { std::string instanceIdPath; type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"DeviceInstanceID",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) instanceIdPath.assign(data,dataLen); if (instanceIdPath.length() != 0) instanceIdPathsToRemove.insert(instanceIdPath); } } } else break; // end of list or failure } RegCloseKey(nwAdapters); } std::string errlist; for(std::set::iterator iidp(instanceIdPathsToRemove.begin());iidp!=instanceIdPathsToRemove.end();++iidp) { std::string err = deletePersistentTapDevice(iidp->c_str()); if (err.length() > 0) { if (errlist.length() > 0) errlist.push_back(','); errlist.append(err); } } return errlist; } std::string WindowsEthernetTap::deletePersistentTapDevice(const char *instanceId) { char iid[256]; SP_REMOVEDEVICE_PARAMS rmdParams; memset(&rmdParams,0,sizeof(rmdParams)); rmdParams.ClassInstallHeader.cbSize = sizeof(SP_CLASSINSTALL_HEADER); rmdParams.ClassInstallHeader.InstallFunction = DIF_REMOVE; rmdParams.Scope = DI_REMOVEDEVICE_GLOBAL; rmdParams.HwProfile = 0; Mutex::Lock _l(_systemDeviceManagementLock); HDEVINFO devInfo = WINENV.SetupDiGetClassDevsExA((const GUID *)0,(PCSTR)0,(HWND)0,DIGCF_ALLCLASSES,(HDEVINFO)0,(PCSTR)0,(PVOID)0); if (devInfo == INVALID_HANDLE_VALUE) return std::string("SetupDiGetClassDevsExA() failed"); WINENV.SetupDiOpenDeviceInfoA(devInfo,instanceId,(HWND)0,0,(PSP_DEVINFO_DATA)0); SP_DEVINFO_DATA devInfoData; memset(&devInfoData,0,sizeof(devInfoData)); devInfoData.cbSize = sizeof(devInfoData); for(DWORD devIndex=0;WINENV.SetupDiEnumDeviceInfo(devInfo,devIndex,&devInfoData);devIndex++) { if ((WINENV.CM_Get_Device_ID_ExA(devInfoData.DevInst,iid,sizeof(iid),0,(HMACHINE)0) == CR_SUCCESS)&&(!strcmp(iid,instanceId))) { if (!WINENV.SetupDiSetClassInstallParamsA(devInfo,&devInfoData,&rmdParams.ClassInstallHeader,sizeof(rmdParams))) { WINENV.SetupDiDestroyDeviceInfoList(devInfo); return std::string("SetupDiSetClassInstallParams() failed"); } if (!WINENV.SetupDiCallClassInstaller(DIF_REMOVE,devInfo,&devInfoData)) { WINENV.SetupDiDestroyDeviceInfoList(devInfo); return std::string("SetupDiCallClassInstaller(DIF_REMOVE) failed"); } WINENV.SetupDiDestroyDeviceInfoList(devInfo); return std::string(); } } WINENV.SetupDiDestroyDeviceInfoList(devInfo); return std::string("instance ID not found"); } bool WindowsEthernetTap::setPersistentTapDeviceState(const char *instanceId,bool enabled) { char iid[256]; SP_PROPCHANGE_PARAMS params; Mutex::Lock _l(_systemDeviceManagementLock); HDEVINFO devInfo = WINENV.SetupDiGetClassDevsExA((const GUID *)0,(PCSTR)0,(HWND)0,DIGCF_ALLCLASSES,(HDEVINFO)0,(PCSTR)0,(PVOID)0); if (devInfo == INVALID_HANDLE_VALUE) return false; WINENV.SetupDiOpenDeviceInfoA(devInfo,instanceId,(HWND)0,0,(PSP_DEVINFO_DATA)0); SP_DEVINFO_DATA devInfoData; memset(&devInfoData,0,sizeof(devInfoData)); devInfoData.cbSize = sizeof(devInfoData); for(DWORD devIndex=0;WINENV.SetupDiEnumDeviceInfo(devInfo,devIndex,&devInfoData);devIndex++) { if ((WINENV.CM_Get_Device_ID_ExA(devInfoData.DevInst,iid,sizeof(iid),0,(HMACHINE)0) == CR_SUCCESS)&&(!strcmp(iid,instanceId))) { memset(¶ms,0,sizeof(params)); params.ClassInstallHeader.cbSize = sizeof(SP_CLASSINSTALL_HEADER); params.ClassInstallHeader.InstallFunction = DIF_PROPERTYCHANGE; params.StateChange = enabled ? DICS_ENABLE : DICS_DISABLE; params.Scope = DICS_FLAG_GLOBAL; params.HwProfile = 0; WINENV.SetupDiSetClassInstallParamsA(devInfo,&devInfoData,¶ms.ClassInstallHeader,sizeof(params)); WINENV.SetupDiCallClassInstaller(DIF_PROPERTYCHANGE,devInfo,&devInfoData); memset(¶ms,0,sizeof(params)); params.ClassInstallHeader.cbSize = sizeof(SP_CLASSINSTALL_HEADER); params.ClassInstallHeader.InstallFunction = DIF_PROPERTYCHANGE; params.StateChange = enabled ? DICS_ENABLE : DICS_DISABLE; params.Scope = DICS_FLAG_CONFIGSPECIFIC; params.HwProfile = 0; WINENV.SetupDiSetClassInstallParamsA(devInfo,&devInfoData,¶ms.ClassInstallHeader,sizeof(params)); WINENV.SetupDiCallClassInstaller(DIF_PROPERTYCHANGE,devInfo,&devInfoData); WINENV.SetupDiDestroyDeviceInfoList(devInfo); return true; } } WINENV.SetupDiDestroyDeviceInfoList(devInfo); return false; } WindowsEthernetTap::WindowsEthernetTap( const char *hp, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int), void *arg) : _handler(handler), _arg(arg), _mac(mac), _nwid(nwid), _tap(INVALID_HANDLE_VALUE), _injectSemaphore(INVALID_HANDLE_VALUE), _pathToHelpers(hp), _run(true), _initialized(false), _enabled(true) { char subkeyName[4096]; char subkeyClass[4096]; char data[4096]; char tag[24]; std::string mySubkeyName; if (mtu > 2800) throw std::runtime_error("MTU too large for Windows tap"); // We "tag" registry entries with the network ID to identify persistent devices Utils::snprintf(tag,sizeof(tag),"%.16llx",(unsigned long long)nwid); Mutex::Lock _l(_systemTapInitLock); HKEY nwAdapters; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002BE10318}",0,KEY_READ|KEY_WRITE,&nwAdapters) != ERROR_SUCCESS) throw std::runtime_error("unable to open registry key for network adapter enumeration"); // Look for the tap instance that corresponds with this network for(DWORD subkeyIndex=0;;++subkeyIndex) { DWORD type; DWORD dataLen; DWORD subkeyNameLen = sizeof(subkeyName); DWORD subkeyClassLen = sizeof(subkeyClass); FILETIME lastWriteTime; if (RegEnumKeyExA(nwAdapters,subkeyIndex,subkeyName,&subkeyNameLen,(DWORD *)0,subkeyClass,&subkeyClassLen,&lastWriteTime) == ERROR_SUCCESS) { type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"ComponentId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) { data[dataLen] = (char)0; if (WINENV.tapDriverName == data) { std::string instanceId; type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"NetCfgInstanceId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) instanceId.assign(data,dataLen); std::string instanceIdPath; type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"DeviceInstanceID",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) instanceIdPath.assign(data,dataLen); if ((_netCfgInstanceId.length() == 0)&&(instanceId.length() != 0)&&(instanceIdPath.length() != 0)) { type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"_ZeroTierTapIdentifier",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) { data[dataLen] = '\0'; if (!strcmp(data,tag)) { _netCfgInstanceId = instanceId; _deviceInstanceId = instanceIdPath; mySubkeyName = subkeyName; break; // found it! } } } } } } else break; // no more subkeys or error occurred enumerating them } // If there is no device, try to create one bool creatingNewDevice = (_netCfgInstanceId.length() == 0); std::string newDeviceInstanceId; if (creatingNewDevice) { for(int getNewAttemptCounter=0;getNewAttemptCounter<2;++getNewAttemptCounter) { for(DWORD subkeyIndex=0;;++subkeyIndex) { DWORD type; DWORD dataLen; DWORD subkeyNameLen = sizeof(subkeyName); DWORD subkeyClassLen = sizeof(subkeyClass); FILETIME lastWriteTime; if (RegEnumKeyExA(nwAdapters,subkeyIndex,subkeyName,&subkeyNameLen,(DWORD *)0,subkeyClass,&subkeyClassLen,&lastWriteTime) == ERROR_SUCCESS) { type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"ComponentId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) { data[dataLen] = '\0'; if (WINENV.tapDriverName == data) { type = 0; dataLen = sizeof(data); if ((RegGetValueA(nwAdapters,subkeyName,"_ZeroTierTapIdentifier",RRF_RT_ANY,&type,(PVOID)data,&dataLen) != ERROR_SUCCESS)||(dataLen <= 0)) { type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"NetCfgInstanceId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) { RegSetKeyValueA(nwAdapters,subkeyName,"_ZeroTierTapIdentifier",REG_SZ,tag,(DWORD)(strlen(tag)+1)); _netCfgInstanceId.assign(data,dataLen); type = 0; dataLen = sizeof(data); if (RegGetValueA(nwAdapters,subkeyName,"DeviceInstanceID",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) _deviceInstanceId.assign(data,dataLen); mySubkeyName = subkeyName; // Disable DHCP by default on new devices HKEY tcpIpInterfaces; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\services\\Tcpip\\Parameters\\Interfaces",0,KEY_READ|KEY_WRITE,&tcpIpInterfaces) == ERROR_SUCCESS) { DWORD enable = 0; RegSetKeyValueA(tcpIpInterfaces,_netCfgInstanceId.c_str(),"EnableDHCP",REG_DWORD,&enable,sizeof(enable)); RegCloseKey(tcpIpInterfaces); } break; // found an unused zttap device } } } } } else break; // no more keys or error occurred } if (_netCfgInstanceId.length() > 0) { break; // found an unused zttap device } else { // no unused zttap devices, so create one std::string errm = addNewPersistentTapDevice((std::string(_pathToHelpers) + WINENV.tapDriverPath).c_str(),newDeviceInstanceId); if (errm.length() > 0) throw std::runtime_error(std::string("unable to create new device instance: ")+errm); } } } if (_netCfgInstanceId.length() > 0) { char tmps[64]; unsigned int tmpsl = Utils::snprintf(tmps,sizeof(tmps),"%.2X-%.2X-%.2X-%.2X-%.2X-%.2X",(unsigned int)mac[0],(unsigned int)mac[1],(unsigned int)mac[2],(unsigned int)mac[3],(unsigned int)mac[4],(unsigned int)mac[5]) + 1; RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"NetworkAddress",REG_SZ,tmps,tmpsl); RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"MAC",REG_SZ,tmps,tmpsl); DWORD tmp = mtu; RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"MTU",REG_DWORD,(LPCVOID)&tmp,sizeof(tmp)); tmp = 0; RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"*NdisDeviceType",REG_DWORD,(LPCVOID)&tmp,sizeof(tmp)); tmp = IF_TYPE_ETHERNET_CSMACD; RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"*IfType",REG_DWORD,(LPCVOID)&tmp,sizeof(tmp)); if (creatingNewDevice) { // Vista/2008 does not set this if (newDeviceInstanceId.length() > 0) RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"DeviceInstanceID",REG_SZ,newDeviceInstanceId.c_str(),(DWORD)newDeviceInstanceId.length()); // Set EnableDHCP to 0 by default on new devices tmp = 0; RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"EnableDHCP",REG_DWORD,(LPCVOID)&tmp,sizeof(tmp)); } RegCloseKey(nwAdapters); } else { RegCloseKey(nwAdapters); throw std::runtime_error("unable to find or create tap adapter"); } { char nobraces[128]; // strip braces from GUID before converting it, because Windows const char *nbtmp1 = _netCfgInstanceId.c_str(); char *nbtmp2 = nobraces; while (*nbtmp1) { if ((*nbtmp1 != '{')&&(*nbtmp1 != '}')) *nbtmp2++ = *nbtmp1; ++nbtmp1; } *nbtmp2 = (char)0; if (UuidFromStringA((RPC_CSTR)nobraces,&_deviceGuid) != RPC_S_OK) throw std::runtime_error("unable to convert instance ID GUID to native GUID (invalid NetCfgInstanceId in registry?)"); } // Get the LUID, which is one of like four fucking ways to refer to a network device in Windows if (ConvertInterfaceGuidToLuid(&_deviceGuid,&_deviceLuid) != NO_ERROR) throw std::runtime_error("unable to convert device interface GUID to LUID"); _initialized = true; if (friendlyName) setFriendlyName(friendlyName); _injectSemaphore = CreateSemaphore(NULL,0,1,NULL); _thread = Thread::start(this); } WindowsEthernetTap::~WindowsEthernetTap() { _run = false; ReleaseSemaphore(_injectSemaphore,1,NULL); Thread::join(_thread); CloseHandle(_injectSemaphore); setPersistentTapDeviceState(_deviceInstanceId.c_str(),false); } void WindowsEthernetTap::setEnabled(bool en) { _enabled = en; } bool WindowsEthernetTap::enabled() const { return _enabled; } bool WindowsEthernetTap::addIp(const InetAddress &ip) { if (!ip.netmaskBits()) // sanity check... netmask of 0.0.0.0 is WUT? return false; Mutex::Lock _l(_assignedIps_m); if (std::find(_assignedIps.begin(),_assignedIps.end(),ip) != _assignedIps.end()) return true; _assignedIps.push_back(ip); _syncIps(); return true; } bool WindowsEthernetTap::removeIp(const InetAddress &ip) { { Mutex::Lock _l(_assignedIps_m); std::vector::iterator aip(std::find(_assignedIps.begin(),_assignedIps.end(),ip)); if (aip != _assignedIps.end()) _assignedIps.erase(aip); } if (!_initialized) return false; try { MIB_UNICASTIPADDRESS_TABLE *ipt = (MIB_UNICASTIPADDRESS_TABLE *)0; if (GetUnicastIpAddressTable(AF_UNSPEC,&ipt) == NO_ERROR) { for(DWORD i=0;iNumEntries;++i) { if (ipt->Table[i].InterfaceLuid.Value == _deviceLuid.Value) { InetAddress addr; switch(ipt->Table[i].Address.si_family) { case AF_INET: addr.set(&(ipt->Table[i].Address.Ipv4.sin_addr.S_un.S_addr),4,ipt->Table[i].OnLinkPrefixLength); break; case AF_INET6: addr.set(ipt->Table[i].Address.Ipv6.sin6_addr.u.Byte,16,ipt->Table[i].OnLinkPrefixLength); if (addr.ipScope() == InetAddress::IP_SCOPE_LINK_LOCAL) continue; // can't remove link-local IPv6 addresses break; } if (addr == ip) { DeleteUnicastIpAddressEntry(&(ipt->Table[i])); FreeMibTable(ipt); std::vector regIps(_getRegistryIPv4Value("IPAddress")); std::vector regSubnetMasks(_getRegistryIPv4Value("SubnetMask")); std::string ipstr(ip.toIpString()); for(std::vector::iterator rip(regIps.begin()),rm(regSubnetMasks.begin());((rip!=regIps.end())&&(rm!=regSubnetMasks.end()));++rip,++rm) { if (*rip == ipstr) { regIps.erase(rip); regSubnetMasks.erase(rm); _setRegistryIPv4Value("IPAddress",regIps); _setRegistryIPv4Value("SubnetMask",regSubnetMasks); break; } } return true; } } } FreeMibTable((PVOID)ipt); } } catch ( ... ) {} return false; } std::vector WindowsEthernetTap::ips() const { static const InetAddress linkLocalLoopback("fe80::1",64); // what is this and why does Windows assign it? std::vector addrs; if (!_initialized) return addrs; try { MIB_UNICASTIPADDRESS_TABLE *ipt = (MIB_UNICASTIPADDRESS_TABLE *)0; if (GetUnicastIpAddressTable(AF_UNSPEC,&ipt) == NO_ERROR) { for(DWORD i=0;iNumEntries;++i) { if (ipt->Table[i].InterfaceLuid.Value == _deviceLuid.Value) { switch(ipt->Table[i].Address.si_family) { case AF_INET: { InetAddress ip(&(ipt->Table[i].Address.Ipv4.sin_addr.S_un.S_addr),4,ipt->Table[i].OnLinkPrefixLength); if (ip != InetAddress::LO4) addrs.push_back(ip); } break; case AF_INET6: { InetAddress ip(ipt->Table[i].Address.Ipv6.sin6_addr.u.Byte,16,ipt->Table[i].OnLinkPrefixLength); if ((ip != linkLocalLoopback)&&(ip != InetAddress::LO6)) addrs.push_back(ip); } break; } } } FreeMibTable(ipt); } } catch ( ... ) {} // sanity check, shouldn't happen unless out of memory std::sort(addrs.begin(),addrs.end()); std::unique(addrs.begin(),addrs.end()); return addrs; } void WindowsEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { if ((!_initialized)||(!_enabled)||(_tap == INVALID_HANDLE_VALUE)||(len > (ZT_IF_MTU))) return; Mutex::Lock _l(_injectPending_m); _injectPending.push( std::pair,unsigned int>(Array(),len + 14) ); char *d = _injectPending.back().first.data; to.copyTo(d,6); from.copyTo(d + 6,6); d[12] = (char)((etherType >> 8) & 0xff); d[13] = (char)(etherType & 0xff); memcpy(d + 14,data,len); ReleaseSemaphore(_injectSemaphore,1,NULL); } std::string WindowsEthernetTap::deviceName() const { char tmp[1024]; if (ConvertInterfaceLuidToNameA(&_deviceLuid,tmp,sizeof(tmp)) != NO_ERROR) return std::string("[ConvertInterfaceLuidToName() failed]"); return std::string(tmp); } void WindowsEthernetTap::setFriendlyName(const char *dn) { if (!_initialized) return; HKEY ifp; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,(std::string("SYSTEM\\CurrentControlSet\\Control\\Network\\{4D36E972-E325-11CE-BFC1-08002BE10318}\\") + _netCfgInstanceId).c_str(),0,KEY_READ|KEY_WRITE,&ifp) == ERROR_SUCCESS) { RegSetKeyValueA(ifp,"Connection","Name",REG_SZ,(LPCVOID)dn,(DWORD)(strlen(dn)+1)); RegCloseKey(ifp); } } void WindowsEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed) { if (!_initialized) return; HANDLE t = _tap; if (t == INVALID_HANDLE_VALUE) return; std::vector newGroups; // The ZT1 tap driver supports an IOCTL to get multicast memberships at the L2 // level... something Windows does not seem to expose ordinarily. This lets // pretty much anything work... IPv4, IPv6, IPX, oldskool Netbios, who knows... unsigned char mcastbuf[TAP_WIN_IOCTL_GET_MULTICAST_MEMBERSHIPS_OUTPUT_BUF_SIZE]; DWORD bytesReturned = 0; if (DeviceIoControl(t,TAP_WIN_IOCTL_GET_MULTICAST_MEMBERSHIPS,(LPVOID)0,0,(LPVOID)mcastbuf,sizeof(mcastbuf),&bytesReturned,NULL)) { MAC mac; DWORD i = 0; while ((i + 6) <= bytesReturned) { mac.setTo(mcastbuf + i,6); i += 6; if ((mac.isMulticast())&&(!mac.isBroadcast())) { // exclude the nulls that may be returned or any other junk Windows puts in there newGroups.push_back(MulticastGroup(mac,0)); } } } std::vector allIps(ips()); for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void WindowsEthernetTap::threadMain() throw() { char tapReadBuf[ZT_IF_MTU + 32]; char tapPath[128]; HANDLE wait4[3]; OVERLAPPED tapOvlRead,tapOvlWrite; Utils::snprintf(tapPath,sizeof(tapPath),"\\\\.\\Global\\%s.tap",_netCfgInstanceId.c_str()); try { while (_run) { // Because Windows setPersistentTapDeviceState(_deviceInstanceId.c_str(),false); Sleep(500); setPersistentTapDeviceState(_deviceInstanceId.c_str(),true); Sleep(500); setPersistentTapDeviceState(_deviceInstanceId.c_str(),false); Sleep(500); setPersistentTapDeviceState(_deviceInstanceId.c_str(),true); Sleep(500); _tap = CreateFileA(tapPath,GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_SYSTEM|FILE_FLAG_OVERLAPPED,NULL); if (_tap == INVALID_HANDLE_VALUE) { Sleep(1000); continue; } { uint32_t tmpi = 1; DWORD bytesReturned = 0; DeviceIoControl(_tap,TAP_WIN_IOCTL_SET_MEDIA_STATUS,&tmpi,sizeof(tmpi),&tmpi,sizeof(tmpi),&bytesReturned,NULL); } #ifdef ZT_WINDOWS_CREATE_FAKE_DEFAULT_ROUTE { /* This inserts a fake default route and a fake ARP entry, forcing * Windows to detect this as a "real" network and apply proper * firewall rules. * * This hack is completely stupid, but Windows made me do it * by being broken and insane. * * Background: Windows tries to detect its network location by * matching it to the ARP address of the default route. Networks * without default routes are "unidentified networks" and cannot * have their firewall classification changed by the user (easily). * * Yes, you read that right. * * The common workaround is to set *NdisDeviceType to 1, which * totally disables all Windows firewall functionality. This is * the answer you'll find on most forums for things like OpenVPN. * * Yes, you read that right. * * The default route workaround is also known, but for this to * work there must be a known default IP that resolves to a known * ARP address. This works for an OpenVPN tunnel, but not here * because this isn't a tunnel. It's a mesh. There is no "other * end," or any other known always on IP. * * So let's make a fake one and shove it in there along with its * fake static ARP entry. Also makes it instant-on and static. * * We'll have to see what DHCP does with this. In the future we * probably will not want to do this on DHCP-enabled networks, so * when we enable DHCP we will go in and yank this wacko hacko from * the routing table before doing so. * * Like Jesse Pinkman would say: "YEEEEAAH BITCH!" */ const uint32_t fakeIp = htonl(0x19fffffe); // 25.255.255.254 -- unrouted IPv4 block for(int i=0;i<8;++i) { MIB_IPNET_ROW2 ipnr; memset(&ipnr,0,sizeof(ipnr)); ipnr.Address.si_family = AF_INET; ipnr.Address.Ipv4.sin_addr.s_addr = fakeIp; ipnr.InterfaceLuid.Value = _deviceLuid.Value; ipnr.PhysicalAddress[0] = _mac[0] ^ 0x10; // just make something up that's consistent and not part of this net ipnr.PhysicalAddress[1] = 0x00; ipnr.PhysicalAddress[2] = (UCHAR)((_deviceGuid.Data1 >> 24) & 0xff); ipnr.PhysicalAddress[3] = (UCHAR)((_deviceGuid.Data1 >> 16) & 0xff); ipnr.PhysicalAddress[4] = (UCHAR)((_deviceGuid.Data1 >> 8) & 0xff); ipnr.PhysicalAddress[5] = (UCHAR)(_deviceGuid.Data1 & 0xff); ipnr.PhysicalAddressLength = 6; ipnr.State = NlnsPermanent; ipnr.IsRouter = 1; ipnr.IsUnreachable = 0; ipnr.ReachabilityTime.LastReachable = 0x0fffffff; ipnr.ReachabilityTime.LastUnreachable = 1; DWORD result = CreateIpNetEntry2(&ipnr); if (result != NO_ERROR) Sleep(500); else break; } for(int i=0;i<8;++i) { MIB_IPFORWARD_ROW2 nr; memset(&nr,0,sizeof(nr)); InitializeIpForwardEntry(&nr); nr.InterfaceLuid.Value = _deviceLuid.Value; nr.DestinationPrefix.Prefix.si_family = AF_INET; // rest is left as 0.0.0.0/0 nr.NextHop.si_family = AF_INET; nr.NextHop.Ipv4.sin_addr.s_addr = fakeIp; nr.Metric = 9999; // do not use as real default route nr.Protocol = MIB_IPPROTO_NETMGMT; DWORD result = CreateIpForwardEntry2(&nr); if (result != NO_ERROR) Sleep(500); else break; } } #endif // Assign or re-assign any should-be-assigned IPs in case we have restarted { Mutex::Lock _l(_assignedIps_m); _syncIps(); } memset(&tapOvlRead,0,sizeof(tapOvlRead)); tapOvlRead.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL); memset(&tapOvlWrite,0,sizeof(tapOvlWrite)); tapOvlWrite.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL); wait4[0] = _injectSemaphore; wait4[1] = tapOvlRead.hEvent; wait4[2] = tapOvlWrite.hEvent; // only included if writeInProgress is true ReadFile(_tap,tapReadBuf,sizeof(tapReadBuf),NULL,&tapOvlRead); bool writeInProgress = false; ULONGLONG timeOfLastBorkCheck = GetTickCount64(); while (_run) { DWORD waitResult = WaitForMultipleObjectsEx(writeInProgress ? 3 : 2,wait4,FALSE,2500,TRUE); if (!_run) break; // will also break outer while(_run) // Check for issues with adapter and close/reopen if any are detected. This // check fixes a while boatload of Windows adapter 'coma' issues after // sleep/wake and when adapters are added/removed. Basically if the tap // device is borked, whack it. { ULONGLONG tc = GetTickCount64(); if ((tc - timeOfLastBorkCheck) >= 2500) { timeOfLastBorkCheck = tc; char aabuf[16384]; ULONG aalen = sizeof(aabuf); if (GetAdaptersAddresses(AF_UNSPEC,GAA_FLAG_SKIP_UNICAST|GAA_FLAG_SKIP_ANYCAST|GAA_FLAG_SKIP_MULTICAST|GAA_FLAG_SKIP_DNS_SERVER|GAA_FLAG_SKIP_FRIENDLY_NAME,(void *)0,reinterpret_cast(aabuf),&aalen) == NO_ERROR) { bool isBorked = false; PIP_ADAPTER_ADDRESSES aa = reinterpret_cast(aabuf); while (aa) { if (_deviceLuid.Value == aa->Luid.Value) { isBorked = (aa->OperStatus != IfOperStatusUp); break; } aa = aa->Next; } if (isBorked) { // Close and reopen tap device if there's an issue (outer loop) break; } } } } if ((waitResult == WAIT_TIMEOUT)||(waitResult == WAIT_FAILED)) continue; if (HasOverlappedIoCompleted(&tapOvlRead)) { DWORD bytesRead = 0; if (GetOverlappedResult(_tap,&tapOvlRead,&bytesRead,FALSE)) { if ((bytesRead > 14)&&(_enabled)) { MAC to(tapReadBuf,6); MAC from(tapReadBuf + 6,6); unsigned int etherType = ((((unsigned int)tapReadBuf[12]) & 0xff) << 8) | (((unsigned int)tapReadBuf[13]) & 0xff); try { // TODO: decode vlans _handler(_arg,_nwid,from,to,etherType,0,tapReadBuf + 14,bytesRead - 14); } catch ( ... ) {} // handlers should not throw } } ReadFile(_tap,tapReadBuf,ZT_IF_MTU + 32,NULL,&tapOvlRead); } if (writeInProgress) { if (HasOverlappedIoCompleted(&tapOvlWrite)) { writeInProgress = false; _injectPending_m.lock(); _injectPending.pop(); } else continue; // still writing, so skip code below and wait } else _injectPending_m.lock(); if (!_injectPending.empty()) { WriteFile(_tap,_injectPending.front().first.data,_injectPending.front().second,NULL,&tapOvlWrite); writeInProgress = true; } _injectPending_m.unlock(); } CancelIo(_tap); CloseHandle(tapOvlRead.hEvent); CloseHandle(tapOvlWrite.hEvent); CloseHandle(_tap); _tap = INVALID_HANDLE_VALUE; // We will restart and re-open the tap unless _run == false } } catch ( ... ) {} // catch unexpected exceptions -- this should not happen but would prevent program crash or other weird issues since threads should not throw } NET_IFINDEX WindowsEthernetTap::_getDeviceIndex() { MIB_IF_TABLE2 *ift = (MIB_IF_TABLE2 *)0; if (GetIfTable2Ex(MibIfTableRaw,&ift) != NO_ERROR) throw std::runtime_error("GetIfTable2Ex() failed"); for(ULONG i=0;iNumEntries;++i) { if (ift->Table[i].InterfaceLuid.Value == _deviceLuid.Value) { NET_IFINDEX idx = ift->Table[i].InterfaceIndex; FreeMibTable(ift); return idx; } } FreeMibTable(&ift); throw std::runtime_error("interface not found"); } std::vector WindowsEthernetTap::_getRegistryIPv4Value(const char *regKey) { std::vector value; HKEY tcpIpInterfaces; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\services\\Tcpip\\Parameters\\Interfaces",0,KEY_READ|KEY_WRITE,&tcpIpInterfaces) == ERROR_SUCCESS) { char buf[16384]; DWORD len = sizeof(buf); DWORD kt = REG_MULTI_SZ; if (RegGetValueA(tcpIpInterfaces,_netCfgInstanceId.c_str(),regKey,0,&kt,&buf,&len) == ERROR_SUCCESS) { switch(kt) { case REG_SZ: if (len > 0) value.push_back(std::string(buf)); break; case REG_MULTI_SZ: { for(DWORD k=0,s=0;k &value) { std::string regMulti; for(std::vector::const_iterator s(value.begin());s!=value.end();++s) { regMulti.append(*s); regMulti.push_back((char)0); } HKEY tcpIpInterfaces; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\services\\Tcpip\\Parameters\\Interfaces",0,KEY_READ|KEY_WRITE,&tcpIpInterfaces) == ERROR_SUCCESS) { if (regMulti.length() > 0) { regMulti.push_back((char)0); RegSetKeyValueA(tcpIpInterfaces,_netCfgInstanceId.c_str(),regKey,REG_MULTI_SZ,regMulti.data(),(DWORD)regMulti.length()); } else { RegDeleteKeyValueA(tcpIpInterfaces,_netCfgInstanceId.c_str(),regKey); } RegCloseKey(tcpIpInterfaces); } } void WindowsEthernetTap::_syncIps() { // assumes _assignedIps_m is locked if (!_initialized) return; std::vector haveIps(ips()); for(std::vector::const_iterator aip(_assignedIps.begin());aip!=_assignedIps.end();++aip) { if (std::find(haveIps.begin(),haveIps.end(),*aip) == haveIps.end()) { MIB_UNICASTIPADDRESS_ROW ipr; InitializeUnicastIpAddressEntry(&ipr); if (aip->isV4()) { ipr.Address.Ipv4.sin_family = AF_INET; ipr.Address.Ipv4.sin_addr.S_un.S_addr = *((const uint32_t *)aip->rawIpData()); ipr.OnLinkPrefixLength = aip->netmaskBits(); if (ipr.OnLinkPrefixLength >= 32) continue; } else if (aip->isV6()) { ipr.Address.Ipv6.sin6_family = AF_INET6; memcpy(ipr.Address.Ipv6.sin6_addr.u.Byte,aip->rawIpData(),16); ipr.OnLinkPrefixLength = aip->netmaskBits(); if (ipr.OnLinkPrefixLength >= 128) continue; } else continue; ipr.PrefixOrigin = IpPrefixOriginManual; ipr.SuffixOrigin = IpSuffixOriginManual; ipr.ValidLifetime = 0xffffffff; ipr.PreferredLifetime = 0xffffffff; ipr.InterfaceLuid = _deviceLuid; ipr.InterfaceIndex = _getDeviceIndex(); CreateUnicastIpAddressEntry(&ipr); } std::string ipStr(aip->toString()); std::vector regIps(_getRegistryIPv4Value("IPAddress")); if (std::find(regIps.begin(),regIps.end(),ipStr) == regIps.end()) { std::vector regSubnetMasks(_getRegistryIPv4Value("SubnetMask")); regIps.push_back(ipStr); regSubnetMasks.push_back(aip->netmask().toIpString()); _setRegistryIPv4Value("IPAddress",regIps); _setRegistryIPv4Value("SubnetMask",regSubnetMasks); } } } } // namespace ZeroTier