summaryrefslogtreecommitdiff
path: root/node/Multicaster.cpp
blob: 301b394c004d694aea282f4ba33239e0e1be4e41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
 * ZeroTier One - Global Peer to Peer Ethernet
 * Copyright (C) 2011-2014  ZeroTier Networks LLC
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * --
 *
 * ZeroTier may be used and distributed under the terms of the GPLv3, which
 * are available at: http://www.gnu.org/licenses/gpl-3.0.html
 *
 * If you would like to embed ZeroTier into a commercial application or
 * redistribute it in a modified binary form, please contact ZeroTier Networks
 * LLC. Start here: http://www.zerotier.com/
 */

#include <algorithm>

#include "Constants.hpp"
#include "Multicaster.hpp"
#include "Topology.hpp"

namespace ZeroTier {

Multicaster::Multicaster()
{
}

Multicaster::~Multicaster()
{
}

void Multicaster::add(const MulticastGroup &mg,const Address &learnedFrom,const Address &member)
{
}

void Multicaster::erase(const MulticastGroup &mg,const Address &member)
{
	Mutex::Lock _l(_groups_m);
	std::map< MulticastGroup,MulticastGroupStatus >::iterator r(_groups.find(mg));
	if (r != _groups.end()) {
		for(std::vector<MulticastGroupMember>::iterator m(r->second.members.begin());m!=r->second.members.end();++m) {
			if (m->address == member) {
				r->second.members.erase(m);
				if (r->second.members.empty())
					_groups.erase(r);
				return;
			}
		}
	}
}

void send(uint64_t nwid,uint64_t now,const Address &self,const MulticastGroup &mg,const MAC &from,unsigned int etherType,const void *data,unsigned int len)
{
	Mutex::Lock _l(_groups_m);
	std::map< MulticastGroup,MulticastGroupStatus >::iterator r(_groups.find(mg));
}

unsigned int Multicaster::shouldGather(const MulticastGroup &mg,uint64_t now,unsigned int limit,bool updateLastGatheredTimeOnNonzeroReturn)
{
	Mutex::Lock _l(_groups_m);
	MulticastGroupStatus &gs = _groups[mg];
	if ((unsigned int)gs.members.size() >= limit) {
		// We already caught our limit, don't need to go fishing any more.
		return 0;
	} else {
		// Compute the delay between fishing expeditions from the fraction of the limit that we already have.
		const uint64_t rateDelay = (uint64_t)ZT_MULTICAST_TOPOLOGY_GATHER_DELAY_MIN + (uint64_t)(((double)gs.members.size() / (double)limit) * (double)(ZT_MULTICAST_TOPOLOGY_GATHER_DELAY_MAX - ZT_MULTICAST_TOPOLOGY_GATHER_DELAY_MIN));

		if ((now - gs.lastGatheredMembers) >= rateDelay) {
			if (updateLastGatheredTimeOnNonzeroReturn)
				gs.lastGatheredMembers = now;
			return (limit - (unsigned int)gs.members.size());
		} else return 0;
	}
}

void Multicaster::clean(uint64_t now,const Topology &topology)
{
	Mutex::Lock _l(_groups_m);
	for(std::map< MulticastGroup,MulticastGroupStatus >::iterator mm(_groups.begin());mm!=_groups.end();) {
		std::vector<MulticastGroupMember>::iterator reader(mm->second.members.begin());
		std::vector<MulticastGroupMember>::iterator writer(mm->second.members.begin());
		unsigned int count = 0;
		while (reader != mm->second.members.end()) {
			if ((now - reader->timestamp) < ZT_MULTICAST_LIKE_EXPIRE) {
				*writer = *reader;

				/* We rank in ascending order of most recent relevant activity. For peers we've learned
				 * about by direct LIKEs, we do this in order of their own activity. For indirectly
				 * acquired peers we do this minus a constant to place these categorically below directly
				 * learned peers. For peers with no active Peer record, we use the time we last learned
				 * about them minus one day (a large constant) to put these at the bottom of the list.
				 * List is sorted in ascending order of rank and multicasts are sent last-to-first. */
				if (writer->learnedFrom) {
					SharedPtr<Peer> p(topology.getPeer(writer->learnedFrom));
					if (p)
						writer->rank = p->lastUnicastFrame() - ZT_MULTICAST_LIKE_EXPIRE;
					else writer->rank = writer->timestamp - (86400000 + ZT_MULTICAST_LIKE_EXPIRE);
				} else {
					SharedPtr<Peer> p(topology.getPeer(writer->address));
					if (p)
						writer->rank = p->lastUnicastFrame();
					else writer->rank = writer->timestamp - 86400000;
				}

				++writer;
				++count;
			}
			++reader;
		}

		if (count) {
			std::sort(mm->second.members.begin(),writer); // sorts in ascending order of rank
			mm->second.members.resize(count); // trim off the ones we cut, after writer
			++mm;
		} else _groups.erase(mm++);
	}
}

} // namespace ZeroTier