/* $Id: md5.c,v 1.3 2007/03/26 04:21:07 fcusack Exp $ * * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. * * $Log: md5.c,v $ * Revision 1.3 2007/03/26 04:21:07 fcusack * use uint32_t (C99) not u_int32_t * * Revision 1.2 2002/06/28 06:29:21 fcusack * change HIGHFIRST #ifdef from 'sun' to __sparc, and add __mips * * Revision 1.1.1.1 1999/08/19 13:13:26 aland * Start of the pam_radius module * * Revision 1.2 1998/04/03 20:19:21 aland * now builds cleanly on Solaris 2.6 * * Revision 1.1 1998/04/03 19:36:59 aland * oh yeah, do MD5 stuff, too * * Revision 1.1 1996/12/01 03:06:54 morgan * Initial revision * * Revision 1.1 1996/09/05 06:43:31 morgan * Initial revision * */ #include #include "md5.h" #ifdef LITTLE_ENDIAN # define byteReverse(buf, len) /* Nothing */ #else void byteReverse(unsigned char *buf, unsigned longs); #ifndef ASM_MD5 /* * Note: this code is harmless on little-endian machines. */ void byteReverse(unsigned char *buf, unsigned longs) { uint32_t t; do { t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 | ((unsigned) buf[1] << 8 | buf[0]); *(uint32_t *) buf = t; buf += 4; } while (--longs); } #endif #endif /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void MD5Init(struct MD5Context *ctx) { ctx->buf[0] = 0x67452301U; ctx->buf[1] = 0xefcdab89U; ctx->buf[2] = 0x98badcfeU; ctx->buf[3] = 0x10325476U; ctx->bits[0] = 0; ctx->bits[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ void MD5Update(struct MD5Context *ctx, unsigned const char *buf, unsigned len) { uint32_t t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) { ctx->bits[1]++; /* Carry from low to high */ } ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *) ctx->in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32_t *) ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32_t *) ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void MD5Final(unsigned char digest[16], struct MD5Context *ctx) { unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32_t *) ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ ((uint32_t *) ctx->in)[14] = ctx->bits[0]; ((uint32_t *) ctx->in)[15] = ctx->bits[1]; MD5Transform(ctx->buf, (uint32_t *) ctx->in); byteReverse((unsigned char *) ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ } #ifndef ASM_MD5 /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w<>(32-s), w += x) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ void MD5Transform(uint32_t buf[4], uint32_t const in[16]) { register uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478U, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756U, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070dbU, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceeeU, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0fafU, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62aU, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613U, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501U, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8U, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7afU, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1U, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7beU, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122U, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193U, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438eU, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821U, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562U, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340U, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51U, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aaU, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105dU, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453U, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681U, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8U, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6U, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6U, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87U, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14edU, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905U, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8U, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9U, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8aU, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942U, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681U, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122U, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380cU, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44U, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9U, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60U, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70U, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6U, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127faU, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085U, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05U, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039U, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5U, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8U, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665U, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244U, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97U, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7U, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039U, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3U, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92U, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47dU, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1U, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4fU, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0U, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314U, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1U, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82U, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235U, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bbU, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391U, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } #endif