%YAML 1.1
---

# Suricata configuration file. In addition to the comments describing all
# options in this file, full documentation can be found at:
# https://suricata.readthedocs.io/en/latest/configuration/suricata-yaml.html
#
# This configuration file generated by:
#     Suricata 6.0.10

##
## Step 1: Inform Suricata about your network
##

vars:
  # more specific is better for alert accuracy and performance
  address-groups:
{% for (name, value) in suricata['address_group'] %}
    {{ name }}: "[{{ value | join(',') }}]"
{% endfor %}

  port-groups:
{% for (name, value) in suricata['port_group'] %}
    {{ name }}: "[{{ value | join(',') }}]"
{% endfor %}

##
## Step 2: Select outputs to enable
##

# The default logging directory.  Any log or output file will be
# placed here if it's not specified with a full path name. This can be
# overridden with the -l command line parameter.
default-log-dir: /var/log/suricata/

# Configure the type of alert (and other) logging you would like.
{% if suricata.log is vyos_defined %}
outputs:
{%     if suricata.log.eve is vyos_defined %}
  # Extensible Event Format (nicknamed EVE) event log in JSON format
  - eve-log:
      enabled: yes
      filetype: {{ suricata.log.eve.filetype }} #regular|syslog|unix_dgram|unix_stream|redis
      filename: {{ suricata.log.eve.filename }}

      types:
{%         if suricata.log.eve.type is not vyos_defined or "alert" in suricata.log.eve.type %}
        - alert:
            tagged-packets: yes
{%         endif %}
{%         if "http" in suricata.log.eve.type %}
        - http:
            enabled: yes
            extended: yes
{%         endif %}
{%         if "tls" in suricata.log.eve.type %}
        - tls:
            enabled: yes
            extended: yes     # enable this for extended logging information
{%         endif %}
{%         for protocol in suricata.log.eve.type %}
{%             if protocol not in ["alert","http","tls"] %}
        - {{ protocol }}:
            enabled: yes
{%             endif %}
{%         endfor %}
{%     endif %}
{% endif %}

##
## Step 3: Configure common capture settings
##
## See "Advanced Capture Options" below for more options, including Netmap
## and PF_RING.
##

# Linux high speed capture support
af-packet:
{% for interface in suricata.interface %}
  - interface: {{ interface }}
    # Default clusterid. AF_PACKET will load balance packets based on flow.
    cluster-id: 99
    # Default AF_PACKET cluster type. AF_PACKET can load balance per flow or per hash.
    # This is only supported for Linux kernel > 3.1
    # possible value are:
    #  * cluster_flow: all packets of a given flow are sent to the same socket
    #  * cluster_cpu: all packets treated in kernel by a CPU are sent to the same socket
    #  * cluster_qm: all packets linked by network card to a RSS queue are sent to the same
    #  socket. Requires at least Linux 3.14.
    #  * cluster_ebpf: eBPF file load balancing. See doc/userguide/capture-hardware/ebpf-xdp.rst for
    #  more info.
    # Recommended modes are cluster_flow on most boxes and cluster_cpu or cluster_qm on system
    # with capture card using RSS (requires cpu affinity tuning and system IRQ tuning)
    cluster-type: cluster_flow
    # In some fragmentation cases, the hash can not be computed. If "defrag" is set
    # to yes, the kernel will do the needed defragmentation before sending the packets.
    defrag: yes
{% endfor %}

# Cross platform libpcap capture support
pcap:
{% for interface in suricata.interface %}
  - interface: {{ interface }}
{% endfor %}

# Settings for reading pcap files
pcap-file:
  # Possible values are:
  #  - yes: checksum validation is forced
  #  - no: checksum validation is disabled
  #  - auto: Suricata uses a statistical approach to detect when
  #  checksum off-loading is used. (default)
  # Warning: 'checksum-validation' must be set to yes to have checksum tested
  checksum-checks: auto

# See "Advanced Capture Options" below for more options, including Netmap
# and PF_RING.


##
## Step 4: App Layer Protocol configuration
##

# Configure the app-layer parsers.
#
# The error-policy setting applies to all app-layer parsers. Values can be
# "drop-flow", "pass-flow", "bypass", "drop-packet", "pass-packet", "reject" or
# "ignore" (the default).
#
# The protocol's section details each protocol.
#
# The option "enabled" takes 3 values - "yes", "no", "detection-only".
# "yes" enables both detection and the parser, "no" disables both, and
# "detection-only" enables protocol detection only (parser disabled).
app-layer:
  # error-policy: ignore
  protocols:
    rfb:
      enabled: yes
      detection-ports:
        dp: 5900, 5901, 5902, 5903, 5904, 5905, 5906, 5907, 5908, 5909
    # MQTT, disabled by default.
    mqtt:
      enabled: yes
      # max-msg-length: 1mb
      # subscribe-topic-match-limit: 100
      # unsubscribe-topic-match-limit: 100
      # Maximum number of live MQTT transactions per flow
      # max-tx: 4096
    krb5:
      enabled: yes
    snmp:
      enabled: yes
    ikev2:
      enabled: yes
    tls:
      enabled: yes
      detection-ports:
        dp: 443

      # Generate JA3 fingerprint from client hello. If not specified it
      # will be disabled by default, but enabled if rules require it.
      #ja3-fingerprints: auto

      # What to do when the encrypted communications start:
      # - default: keep tracking TLS session, check for protocol anomalies,
      #            inspect tls_* keywords. Disables inspection of unmodified
      #            'content' signatures.
      # - bypass:  stop processing this flow as much as possible. No further
      #            TLS parsing and inspection. Offload flow bypass to kernel
      #            or hardware if possible.
      # - full:    keep tracking and inspection as normal. Unmodified content
      #            keyword signatures are inspected as well.
      #
      # For best performance, select 'bypass'.
      #
      #encryption-handling: default

    dcerpc:
      enabled: yes
    ftp:
      enabled: yes
      # memcap: 64mb
    rdp:
      enabled: yes
    ssh:
      enabled: yes
      #hassh: yes
    # HTTP2: Experimental HTTP 2 support. Disabled by default.
    http2:
      enabled: no
      # use http keywords on HTTP2 traffic
      http1-rules: no
    smtp:
      enabled: yes
      raw-extraction: no
      # Configure SMTP-MIME Decoder
      mime:
        # Decode MIME messages from SMTP transactions
        # (may be resource intensive)
        # This field supersedes all others because it turns the entire
        # process on or off
        decode-mime: yes

        # Decode MIME entity bodies (ie. Base64, quoted-printable, etc.)
        decode-base64: yes
        decode-quoted-printable: yes

        # Maximum bytes per header data value stored in the data structure
        # (default is 2000)
        header-value-depth: 2000

        # Extract URLs and save in state data structure
        extract-urls: yes
        # Set to yes to compute the md5 of the mail body. You will then
        # be able to journalize it.
        body-md5: no
      # Configure inspected-tracker for file_data keyword
      inspected-tracker:
        content-limit: 100000
        content-inspect-min-size: 32768
        content-inspect-window: 4096
    imap:
      enabled: detection-only
    smb:
      enabled: yes
      detection-ports:
        dp: 139, 445

      # Stream reassembly size for SMB streams. By default track it completely.
      #stream-depth: 0

    nfs:
      enabled: yes
    tftp:
      enabled: yes
    dns:
      tcp:
        enabled: yes
        detection-ports:
          dp: 53
      udp:
        enabled: yes
        detection-ports:
          dp: 53
    http:
      enabled: yes
      # memcap:                   Maximum memory capacity for HTTP
      #                           Default is unlimited, values can be 64mb, e.g.

      # default-config:           Used when no server-config matches
      #   personality:            List of personalities used by default
      #   request-body-limit:     Limit reassembly of request body for inspection
      #                           by http_client_body & pcre /P option.
      #   response-body-limit:    Limit reassembly of response body for inspection
      #                           by file_data, http_server_body & pcre /Q option.
      #
      #   For advanced options, see the user guide


      # server-config:            List of server configurations to use if address matches
      #   address:                List of IP addresses or networks for this block
      #   personality:            List of personalities used by this block
      #
      #                           Then, all the fields from default-config can be overloaded
      #
      # Currently Available Personalities:
      #   Minimal, Generic, IDS (default), IIS_4_0, IIS_5_0, IIS_5_1, IIS_6_0,
      #   IIS_7_0, IIS_7_5, Apache_2
      libhtp:
         default-config:
           personality: IDS

           # Can be specified in kb, mb, gb.  Just a number indicates
           # it's in bytes.
           request-body-limit: 100kb
           response-body-limit: 100kb

           # inspection limits
           request-body-minimal-inspect-size: 32kb
           request-body-inspect-window: 4kb
           response-body-minimal-inspect-size: 40kb
           response-body-inspect-window: 16kb

           # response body decompression (0 disables)
           response-body-decompress-layer-limit: 2

           # auto will use http-body-inline mode in IPS mode, yes or no set it statically
           http-body-inline: auto

           # Decompress SWF files.
           # Two types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
           # compress-depth:
           # Specifies the maximum amount of data to decompress,
           # set 0 for unlimited.
           # decompress-depth:
           # Specifies the maximum amount of decompressed data to obtain,
           # set 0 for unlimited.
           swf-decompression:
             enabled: yes
             type: both
             compress-depth: 100kb
             decompress-depth: 100kb

           # Use a random value for inspection sizes around the specified value.
           # This lowers the risk of some evasion techniques but could lead
           # to detection change between runs. It is set to 'yes' by default.
           #randomize-inspection-sizes: yes
           # If "randomize-inspection-sizes" is active, the value of various
           # inspection size will be chosen from the [1 - range%, 1 + range%]
           # range
           # Default value of "randomize-inspection-range" is 10.
           #randomize-inspection-range: 10

           # decoding
           double-decode-path: no
           double-decode-query: no

           # Can enable LZMA decompression
           #lzma-enabled: false
           # Memory limit usage for LZMA decompression dictionary
           # Data is decompressed until dictionary reaches this size
           #lzma-memlimit: 1mb
           # Maximum decompressed size with a compression ratio
           # above 2048 (only LZMA can reach this ratio, deflate cannot)
           #compression-bomb-limit: 1mb
           # Maximum time spent decompressing a single transaction in usec
           #decompression-time-limit: 100000

         server-config:

           #- apache:
           #    address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
           #    personality: Apache_2
           #    # Can be specified in kb, mb, gb.  Just a number indicates
           #    # it's in bytes.
           #    request-body-limit: 4096
           #    response-body-limit: 4096
           #    double-decode-path: no
           #    double-decode-query: no

           #- iis7:
           #    address:
           #      - 192.168.0.0/24
           #      - 192.168.10.0/24
           #    personality: IIS_7_0
           #    # Can be specified in kb, mb, gb.  Just a number indicates
           #    # it's in bytes.
           #    request-body-limit: 4096
           #    response-body-limit: 4096
           #    double-decode-path: no
           #    double-decode-query: no

    # Note: Modbus probe parser is minimalist due to the limited usage in the field.
    # Only Modbus message length (greater than Modbus header length)
    # and protocol ID (equal to 0) are checked in probing parser
    # It is important to enable detection port and define Modbus port
    # to avoid false positives
    modbus:
      # How many unanswered Modbus requests are considered a flood.
      # If the limit is reached, the app-layer-event:modbus.flooded; will match.
      #request-flood: 500

      enabled: no
      detection-ports:
        dp: 502
      # According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it
      # is recommended to keep the TCP connection opened with a remote device
      # and not to open and close it for each MODBUS/TCP transaction. In that
      # case, it is important to set the depth of the stream reassembling as
      # unlimited (stream.reassembly.depth: 0)

      # Stream reassembly size for modbus. By default track it completely.
      stream-depth: 0

    # DNP3
    dnp3:
      enabled: no
      detection-ports:
        dp: 20000

    # SCADA EtherNet/IP and CIP protocol support
    enip:
      enabled: no
      detection-ports:
        dp: 44818
        sp: 44818

    ntp:
      enabled: yes

    dhcp:
      enabled: yes

    sip:
      enabled: yes

# Limit for the maximum number of asn1 frames to decode (default 256)
asn1-max-frames: 256

# Datasets default settings
# datasets:
#   # Default fallback memcap and hashsize values for datasets in case these
#   # were not explicitly defined.
#   defaults:
#     memcap: 100mb
#     hashsize: 2048

##############################################################################
##
## Advanced settings below
##
##############################################################################

##
## Run Options
##

# Run Suricata with a specific user-id and group-id:
#run-as:
#  user: suri
#  group: suri

# Some logging modules will use that name in event as identifier. The default
# value is the hostname
#sensor-name: suricata

# Default location of the pid file. The pid file is only used in
# daemon mode (start Suricata with -D). If not running in daemon mode
# the --pidfile command line option must be used to create a pid file.
#pid-file: /var/run/suricata.pid

# Daemon working directory
# Suricata will change directory to this one if provided
# Default: "/"
#daemon-directory: "/"

# Umask.
# Suricata will use this umask if it is provided. By default it will use the
# umask passed on by the shell.
#umask: 022

# Suricata core dump configuration. Limits the size of the core dump file to
# approximately max-dump. The actual core dump size will be a multiple of the
# page size. Core dumps that would be larger than max-dump are truncated. On
# Linux, the actual core dump size may be a few pages larger than max-dump.
# Setting max-dump to 0 disables core dumping.
# Setting max-dump to 'unlimited' will give the full core dump file.
# On 32-bit Linux, a max-dump value >= ULONG_MAX may cause the core dump size
# to be 'unlimited'.

coredump:
  max-dump: unlimited

# If the Suricata box is a router for the sniffed networks, set it to 'router'. If
# it is a pure sniffing setup, set it to 'sniffer-only'.
# If set to auto, the variable is internally switched to 'router' in IPS mode
# and 'sniffer-only' in IDS mode.
# This feature is currently only used by the reject* keywords.
host-mode: auto

# Number of packets preallocated per thread. The default is 1024. A higher number
# will make sure each CPU will be more easily kept busy, but may negatively
# impact caching.
#max-pending-packets: 1024

# Runmode the engine should use. Please check --list-runmodes to get the available
# runmodes for each packet acquisition method. Default depends on selected capture
# method. 'workers' generally gives best performance.
#runmode: autofp

# Specifies the kind of flow load balancer used by the flow pinned autofp mode.
#
# Supported schedulers are:
#
# hash     - Flow assigned to threads using the 5-7 tuple hash.
# ippair   - Flow assigned to threads using addresses only.
#
#autofp-scheduler: hash

# Preallocated size for each packet. Default is 1514 which is the classical
# size for pcap on Ethernet. You should adjust this value to the highest
# packet size (MTU + hardware header) on your system.
#default-packet-size: 1514

# Unix command socket that can be used to pass commands to Suricata.
# An external tool can then connect to get information from Suricata
# or trigger some modifications of the engine. Set enabled to yes
# to activate the feature. In auto mode, the feature will only be
# activated in live capture mode. You can use the filename variable to set
# the file name of the socket.
unix-command:
  enabled: yes
  filename: /run/suricata/suricata.socket

# Magic file. The extension .mgc is added to the value here.
#magic-file: /usr/share/file/magic
#magic-file:

# GeoIP2 database file. Specify path and filename of GeoIP2 database
# if using rules with "geoip" rule option.
#geoip-database: /usr/local/share/GeoLite2/GeoLite2-Country.mmdb

legacy:
  uricontent: enabled

##
## Detection settings
##

# Set the order of alerts based on actions
# The default order is pass, drop, reject, alert
# action-order:
#   - pass
#   - drop
#   - reject
#   - alert

# Define maximum number of possible alerts that can be triggered for the same
# packet. Default is 15
#packet-alert-max: 15

# IP Reputation
#reputation-categories-file: /etc/suricata/iprep/categories.txt
#default-reputation-path: /etc/suricata/iprep
#reputation-files:
# - reputation.list

# When run with the option --engine-analysis, the engine will read each of
# the parameters below, and print reports for each of the enabled sections
# and exit.  The reports are printed to a file in the default log dir
# given by the parameter "default-log-dir", with engine reporting
# subsection below printing reports in its own report file.
engine-analysis:
  # enables printing reports for fast-pattern for every rule.
  rules-fast-pattern: yes
  # enables printing reports for each rule
  rules: yes

#recursion and match limits for PCRE where supported
pcre:
  match-limit: 3500
  match-limit-recursion: 1500

##
## Advanced Traffic Tracking and Reconstruction Settings
##

# Host specific policies for defragmentation and TCP stream
# reassembly. The host OS lookup is done using a radix tree, just
# like a routing table so the most specific entry matches.
host-os-policy:
  # Make the default policy windows.
  windows: [0.0.0.0/0]
  bsd: []
  bsd-right: []
  old-linux: []
  linux: []
  old-solaris: []
  solaris: []
  hpux10: []
  hpux11: []
  irix: []
  macos: []
  vista: []
  windows2k3: []

# Defrag settings:

# The memcap-policy value can be "drop-flow", "pass-flow", "bypass",
# "drop-packet", "pass-packet", "reject" or "ignore" (which is the default).
defrag:
  memcap: 32mb
  # memcap-policy: ignore
  hash-size: 65536
  trackers: 65535 # number of defragmented flows to follow
  max-frags: 65535 # number of fragments to keep (higher than trackers)
  prealloc: yes
  timeout: 60

# Enable defrag per host settings
#  host-config:
#
#    - dmz:
#        timeout: 30
#        address: [192.168.1.0/24, 127.0.0.0/8, 1.1.1.0/24, 2.2.2.0/24, "1.1.1.1", "2.2.2.2", "::1"]
#
#    - lan:
#        timeout: 45
#        address:
#          - 192.168.0.0/24
#          - 192.168.10.0/24
#          - 172.16.14.0/24

# Flow settings:
# By default, the reserved memory (memcap) for flows is 32MB. This is the limit
# for flow allocation inside the engine. You can change this value to allow
# more memory usage for flows.
# The hash-size determines the size of the hash used to identify flows inside
# the engine, and by default the value is 65536.
# At startup, the engine can preallocate a number of flows, to get better
# performance. The number of flows preallocated is 10000 by default.
# emergency-recovery is the percentage of flows that the engine needs to
# prune before clearing the emergency state. The emergency state is activated
# when the memcap limit is reached, allowing new flows to be created, but
# pruning them with the emergency timeouts (they are defined below).
# If the memcap is reached, the engine will try to prune flows
# with the default timeouts. If it doesn't find a flow to prune, it will set
# the emergency bit and it will try again with more aggressive timeouts.
# If that doesn't work, then it will try to kill the oldest flows using
# last time seen flows.
# The memcap can be specified in kb, mb, gb.  Just a number indicates it's
# in bytes.
# The memcap-policy can be "drop-flow", "pass-flow", "bypass", "drop-packet",
# "pass-packet", "reject" or "ignore" (which is the default).

flow:
  memcap: 128mb
  #memcap-policy: ignore
  hash-size: 65536
  prealloc: 10000
  emergency-recovery: 30
  #managers: 1 # default to one flow manager
  #recyclers: 1 # default to one flow recycler thread

# This option controls the use of VLAN ids in the flow (and defrag)
# hashing. Normally this should be enabled, but in some (broken)
# setups where both sides of a flow are not tagged with the same VLAN
# tag, we can ignore the VLAN id's in the flow hashing.
vlan:
  use-for-tracking: true

# Specific timeouts for flows. Here you can specify the timeouts that the
# active flows will wait to transit from the current state to another, on each
# protocol. The value of "new" determines the seconds to wait after a handshake or
# stream startup before the engine frees the data of that flow it doesn't
# change the state to established (usually if we don't receive more packets
# of that flow). The value of "established" is the amount of
# seconds that the engine will wait to free the flow if that time elapses
# without receiving new packets or closing the connection. "closed" is the
# amount of time to wait after a flow is closed (usually zero). "bypassed"
# timeout controls locally bypassed flows. For these flows we don't do any other
# tracking. If no packets have been seen after this timeout, the flow is discarded.
#
# There's an emergency mode that will become active under attack circumstances,
# making the engine to check flow status faster. This configuration variables
# use the prefix "emergency-" and work similar as the normal ones.
# Some timeouts doesn't apply to all the protocols, like "closed", for udp and
# icmp.

flow-timeouts:

  default:
    new: 30
    established: 300
    closed: 0
    bypassed: 100
    emergency-new: 10
    emergency-established: 100
    emergency-closed: 0
    emergency-bypassed: 50
  tcp:
    new: 60
    established: 600
    closed: 60
    bypassed: 100
    emergency-new: 5
    emergency-established: 100
    emergency-closed: 10
    emergency-bypassed: 50
  udp:
    new: 30
    established: 300
    bypassed: 100
    emergency-new: 10
    emergency-established: 100
    emergency-bypassed: 50
  icmp:
    new: 30
    established: 300
    bypassed: 100
    emergency-new: 10
    emergency-established: 100
    emergency-bypassed: 50

# Stream engine settings. Here the TCP stream tracking and reassembly
# engine is configured.
#
# stream:
#   memcap: 64mb                # Can be specified in kb, mb, gb.  Just a
#                               # number indicates it's in bytes.
#   memcap-policy: ignore       # Can be "drop-flow", "pass-flow", "bypass",
#                               # "drop-packet", "pass-packet", "reject" or
#                               # "ignore" default is "ignore"
#   checksum-validation: yes    # To validate the checksum of received
#                               # packet. If csum validation is specified as
#                               # "yes", then packets with invalid csum values will not
#                               # be processed by the engine stream/app layer.
#                               # Warning: locally generated traffic can be
#                               # generated without checksum due to hardware offload
#                               # of checksum. You can control the handling of checksum
#                               # on a per-interface basis via the 'checksum-checks'
#                               # option
#   prealloc-sessions: 2k       # 2k sessions prealloc'd per stream thread
#   midstream: false            # don't allow midstream session pickups
#   midstream-policy: ignore    # Can be "drop-flow", "pass-flow", "bypass",
#                               # "drop-packet", "pass-packet", "reject" or
#                               # "ignore" default is "ignore"
#   async-oneside: false        # don't enable async stream handling
#   inline: no                  # stream inline mode
#   drop-invalid: yes           # in inline mode, drop packets that are invalid with regards to streaming engine
#   max-synack-queued: 5        # Max different SYN/ACKs to queue
#   bypass: no                  # Bypass packets when stream.reassembly.depth is reached.
#                               # Warning: first side to reach this triggers
#                               # the bypass.
#
#   reassembly:
#     memcap: 256mb             # Can be specified in kb, mb, gb.  Just a number
#                               # indicates it's in bytes.
#     memcap-policy: ignore     # Can be "drop-flow", "pass-flow", "bypass",
#                               # "drop-packet", "pass-packet", "reject" or
#                               # "ignore" default is "ignore"
#     depth: 1mb                # Can be specified in kb, mb, gb.  Just a number
#                               # indicates it's in bytes.
#     toserver-chunk-size: 2560 # inspect raw stream in chunks of at least
#                               # this size.  Can be specified in kb, mb,
#                               # gb.  Just a number indicates it's in bytes.
#     toclient-chunk-size: 2560 # inspect raw stream in chunks of at least
#                               # this size.  Can be specified in kb, mb,
#                               # gb.  Just a number indicates it's in bytes.
#     randomize-chunk-size: yes # Take a random value for chunk size around the specified value.
#                               # This lowers the risk of some evasion techniques but could lead
#                               # to detection change between runs. It is set to 'yes' by default.
#     randomize-chunk-range: 10 # If randomize-chunk-size is active, the value of chunk-size is
#                               # a random value between (1 - randomize-chunk-range/100)*toserver-chunk-size
#                               # and (1 + randomize-chunk-range/100)*toserver-chunk-size and the same
#                               # calculation for toclient-chunk-size.
#                               # Default value of randomize-chunk-range is 10.
#
#     raw: yes                  # 'Raw' reassembly enabled or disabled.
#                               # raw is for content inspection by detection
#                               # engine.
#
#     segment-prealloc: 2048    # number of segments preallocated per thread
#
#     check-overlap-different-data: true|false
#                               # check if a segment contains different data
#                               # than what we've already seen for that
#                               # position in the stream.
#                               # This is enabled automatically if inline mode
#                               # is used or when stream-event:reassembly_overlap_different_data;
#                               # is used in a rule.
#
stream:
  memcap: 64mb
  #memcap-policy: ignore
  checksum-validation: yes      # reject incorrect csums
  #midstream: false
  #midstream-policy: ignore
  inline: auto                  # auto will use inline mode in IPS mode, yes or no set it statically
  reassembly:
    memcap: 256mb
    #memcap-policy: ignore
    depth: 1mb                  # reassemble 1mb into a stream
    toserver-chunk-size: 2560
    toclient-chunk-size: 2560
    randomize-chunk-size: yes
    #randomize-chunk-range: 10
    #raw: yes
    #segment-prealloc: 2048
    #check-overlap-different-data: true

# Host table:
#
# Host table is used by the tagging and per host thresholding subsystems.
#
host:
  hash-size: 4096
  prealloc: 1000
  memcap: 32mb

# IP Pair table:
#
# Used by xbits 'ippair' tracking.
#
#ippair:
#  hash-size: 4096
#  prealloc: 1000
#  memcap: 32mb

# Decoder settings

decoder:
  # Teredo decoder is known to not be completely accurate
  # as it will sometimes detect non-teredo as teredo.
  teredo:
    enabled: true
    # ports to look for Teredo. Max 4 ports. If no ports are given, or
    # the value is set to 'any', Teredo detection runs on _all_ UDP packets.
    ports: $TEREDO_PORTS # syntax: '[3544, 1234]' or '3533' or 'any'.

  # VXLAN decoder is assigned to up to 4 UDP ports. By default only the
  # IANA assigned port 4789 is enabled.
  vxlan:
    enabled: true
    ports: $VXLAN_PORTS # syntax: '[8472, 4789]' or '4789'.

  # VNTag decode support
  vntag:
    enabled: false

  # Geneve decoder is assigned to up to 4 UDP ports. By default only the
  # IANA assigned port 6081 is enabled.
  geneve:
    enabled: true
    ports: $GENEVE_PORTS # syntax: '[6081, 1234]' or '6081'.

  # maximum number of decoder layers for a packet
  # max-layers: 16

##
## Performance tuning and profiling
##

# The detection engine builds internal groups of signatures. The engine
# allows us to specify the profile to use for them, to manage memory in an
# efficient way keeping good performance. For the profile keyword you
# can use the words "low", "medium", "high" or "custom". If you use custom,
# make sure to define the values in the "custom-values" section.
# Usually you would prefer medium/high/low.
#
# "sgh mpm-context", indicates how the staging should allot mpm contexts for
# the signature groups.  "single" indicates the use of a single context for
# all the signature group heads.  "full" indicates a mpm-context for each
# group head.  "auto" lets the engine decide the distribution of contexts
# based on the information the engine gathers on the patterns from each
# group head.
#
# The option inspection-recursion-limit is used to limit the recursive calls
# in the content inspection code.  For certain payload-sig combinations, we
# might end up taking too much time in the content inspection code.
# If the argument specified is 0, the engine uses an internally defined
# default limit.  When a value is not specified, there are no limits on the recursion.
detect:
  profile: medium
  custom-values:
    toclient-groups: 3
    toserver-groups: 25
  sgh-mpm-context: auto
  inspection-recursion-limit: 3000
  # If set to yes, the loading of signatures will be made after the capture
  # is started. This will limit the downtime in IPS mode.
  #delayed-detect: yes

  prefilter:
    # default prefiltering setting. "mpm" only creates MPM/fast_pattern
    # engines. "auto" also sets up prefilter engines for other keywords.
    # Use --list-keywords=all to see which keywords support prefiltering.
    default: mpm

  # the grouping values above control how many groups are created per
  # direction. Port whitelisting forces that port to get its own group.
  # Very common ports will benefit, as well as ports with many expensive
  # rules.
  grouping:
    #tcp-whitelist: 53, 80, 139, 443, 445, 1433, 3306, 3389, 6666, 6667, 8080
    #udp-whitelist: 53, 135, 5060

  profiling:
    # Log the rules that made it past the prefilter stage, per packet
    # default is off. The threshold setting determines how many rules
    # must have made it past pre-filter for that rule to trigger the
    # logging.
    #inspect-logging-threshold: 200
    grouping:
      dump-to-disk: false
      include-rules: false      # very verbose
      include-mpm-stats: false

# Select the multi pattern algorithm you want to run for scan/search the
# in the engine.
#
# The supported algorithms are:
# "ac"      - Aho-Corasick, default implementation
# "ac-bs"   - Aho-Corasick, reduced memory implementation
# "ac-ks"   - Aho-Corasick, "Ken Steele" variant
# "hs"      - Hyperscan, available when built with Hyperscan support
#
# The default mpm-algo value of "auto" will use "hs" if Hyperscan is
# available, "ac" otherwise.
#
# The mpm you choose also decides the distribution of mpm contexts for
# signature groups, specified by the conf - "detect.sgh-mpm-context".
# Selecting "ac" as the mpm would require "detect.sgh-mpm-context"
# to be set to "single", because of ac's memory requirements, unless the
# ruleset is small enough to fit in memory, in which case one can
# use "full" with "ac".  The rest of the mpms can be run in "full" mode.

mpm-algo: auto

# Select the matching algorithm you want to use for single-pattern searches.
#
# Supported algorithms are "bm" (Boyer-Moore) and "hs" (Hyperscan, only
# available if Suricata has been built with Hyperscan support).
#
# The default of "auto" will use "hs" if available, otherwise "bm".

spm-algo: auto

# Suricata is multi-threaded. Here the threading can be influenced.
threading:
  set-cpu-affinity: no
  # Tune cpu affinity of threads. Each family of threads can be bound
  # to specific CPUs.
  #
  # These 2 apply to the all runmodes:
  # management-cpu-set is used for flow timeout handling, counters
  # worker-cpu-set is used for 'worker' threads
  #
  # Additionally, for autofp these apply:
  # receive-cpu-set is used for capture threads
  # verdict-cpu-set is used for IPS verdict threads
  #
  cpu-affinity:
    - management-cpu-set:
        cpu: [ 0 ]  # include only these CPUs in affinity settings
    - receive-cpu-set:
        cpu: [ 0 ]  # include only these CPUs in affinity settings
    - worker-cpu-set:
        cpu: [ "all" ]
        mode: "exclusive"
        # Use explicitly 3 threads and don't compute number by using
        # detect-thread-ratio variable:
        # threads: 3
        prio:
          low: [ 0 ]
          medium: [ "1-2" ]
          high: [ 3 ]
          default: "medium"
    #- verdict-cpu-set:
    #    cpu: [ 0 ]
    #    prio:
    #      default: "high"
  #
  # By default Suricata creates one "detect" thread per available CPU/CPU core.
  # This setting allows controlling this behaviour. A ratio setting of 2 will
  # create 2 detect threads for each CPU/CPU core. So for a dual core CPU this
  # will result in 4 detect threads. If values below 1 are used, less threads
  # are created. So on a dual core CPU a setting of 0.5 results in 1 detect
  # thread being created. Regardless of the setting at a minimum 1 detect
  # thread will always be created.
  #
  detect-thread-ratio: 1.0
  #
  # By default, the per-thread stack size is left to its default setting. If
  # the default thread stack size is too small, use the following configuration
  # setting to change the size. Note that if any thread's stack size cannot be
  # set to this value, a fatal error occurs.
  #
  # Generally, the per-thread stack-size should not exceed 8MB.
  #stack-size: 8mb

# Luajit has a strange memory requirement, its 'states' need to be in the
# first 2G of the process' memory.
#
# 'luajit.states' is used to control how many states are preallocated.
# State use: per detect script: 1 per detect thread. Per output script: 1 per
# script.
luajit:
  states: 128

# Profiling settings. Only effective if Suricata has been built with
# the --enable-profiling configure flag.
#
profiling:
  # Run profiling for every X-th packet. The default is 1, which means we
  # profile every packet. If set to 1000, one packet is profiled for every
  # 1000 received.
  #sample-rate: 1000

  # rule profiling
  rules:

    # Profiling can be disabled here, but it will still have a
    # performance impact if compiled in.
    enabled: yes
    filename: rule_perf.log
    append: yes

    # Sort options: ticks, avgticks, checks, matches, maxticks
    # If commented out all the sort options will be used.
    #sort: avgticks

    # Limit the number of sids for which stats are shown at exit (per sort).
    limit: 10

    # output to json
    json: yes

  # per keyword profiling
  keywords:
    enabled: yes
    filename: keyword_perf.log
    append: yes

  prefilter:
    enabled: yes
    filename: prefilter_perf.log
    append: yes

  # per rulegroup profiling
  rulegroups:
    enabled: yes
    filename: rule_group_perf.log
    append: yes

  # packet profiling
  packets:

    # Profiling can be disabled here, but it will still have a
    # performance impact if compiled in.
    enabled: yes
    filename: packet_stats.log
    append: yes

    # per packet csv output
    csv:

      # Output can be disabled here, but it will still have a
      # performance impact if compiled in.
      enabled: no
      filename: packet_stats.csv

  # profiling of locking. Only available when Suricata was built with
  # --enable-profiling-locks.
  locks:
    enabled: no
    filename: lock_stats.log
    append: yes

  pcap-log:
    enabled: no
    filename: pcaplog_stats.log
    append: yes

##
## Netfilter integration
##

# When running in NFQ inline mode, it is possible to use a simulated
# non-terminal NFQUEUE verdict.
# This permits sending all needed packet to Suricata via this rule:
#        iptables -I FORWARD -m mark ! --mark $MARK/$MASK -j NFQUEUE
# And below, you can have your standard filtering ruleset. To activate
# this mode, you need to set mode to 'repeat'
# If you want a packet to be sent to another queue after an ACCEPT decision
# set the mode to 'route' and set next-queue value.
# On Linux >= 3.1, you can set batchcount to a value > 1 to improve performance
# by processing several packets before sending a verdict (worker runmode only).
# On Linux >= 3.6, you can set the fail-open option to yes to have the kernel
# accept the packet if Suricata is not able to keep pace.
# bypass mark and mask can be used to implement NFQ bypass. If bypass mark is
# set then the NFQ bypass is activated. Suricata will set the bypass mark/mask
# on packet of a flow that need to be bypassed. The Nefilter ruleset has to
# directly accept all packets of a flow once a packet has been marked.
nfq:
#  mode: accept
#  repeat-mark: 1
#  repeat-mask: 1
#  bypass-mark: 1
#  bypass-mask: 1
#  route-queue: 2
#  batchcount: 20
#  fail-open: yes

#nflog support
nflog:
    # netlink multicast group
    # (the same as the iptables --nflog-group param)
    # Group 0 is used by the kernel, so you can't use it
  - group: 2
    # netlink buffer size
    buffer-size: 18432
    # put default value here
  - group: default
    # set number of packets to queue inside kernel
    qthreshold: 1
    # set the delay before flushing packet in the kernel's queue
    qtimeout: 100
    # netlink max buffer size
    max-size: 20000

##
## Advanced Capture Options
##

# General settings affecting packet capture
capture:
  # disable NIC offloading. It's restored when Suricata exits.
  # Enabled by default.
  #disable-offloading: false
  #
  # disable checksum validation. Same as setting '-k none' on the
  # commandline.
  #checksum-validation: none

# Netmap support
#
# Netmap operates with NIC directly in driver, so you need FreeBSD 11+ which has
# built-in Netmap support or compile and install the Netmap module and appropriate
# NIC driver for your Linux system.
# To reach maximum throughput disable all receive-, segmentation-,
# checksum- offloading on your NIC (using ethtool or similar).
# Disabling TX checksum offloading is *required* for connecting OS endpoint
# with NIC endpoint.
# You can find more information at https://github.com/luigirizzo/netmap
#
netmap:
 - interface: default

# PF_RING configuration: for use with native PF_RING support
# for more info see http://www.ntop.org/products/pf_ring/
pfring:
  - interface: default
    #threads: 2

# For FreeBSD ipfw(8) divert(4) support.
# Please make sure you have ipfw_load="YES" and ipdivert_load="YES"
# in /etc/loader.conf or kldload'ing the appropriate kernel modules.
# Additionally, you need to have an ipfw rule for the engine to see
# the packets from ipfw.  For Example:
#
#   ipfw add 100 divert 8000 ip from any to any
#
# N.B. This example uses "8000" -- this number must mach the values
# you passed on the command line, i.e., -d 8000
#
ipfw:

  # Reinject packets at the specified ipfw rule number.  This config
  # option is the ipfw rule number AT WHICH rule processing continues
  # in the ipfw processing system after the engine has finished
  # inspecting the packet for acceptance.  If no rule number is specified,
  # accepted packets are reinjected at the divert rule which they entered
  # and IPFW rule processing continues.  No check is done to verify
  # this will rule makes sense so care must be taken to avoid loops in ipfw.
  #
  ## The following example tells the engine to reinject packets
  # back into the ipfw firewall AT rule number 5500:
  #
  # ipfw-reinjection-rule-number: 5500


napatech:
    # When use_all_streams is set to "yes" the initialization code will query
    # the Napatech service for all configured streams and listen on all of them.
    # When set to "no" the streams config array will be used.
    #
    # This option necessitates running the appropriate NTPL commands to create
    # the desired streams prior to running Suricata.
    #use-all-streams: no

    # The streams to listen on when auto-config is disabled or when and threading
    # cpu-affinity is disabled.  This can be either:
    #   an individual stream (e.g. streams: [0])
    # or
    #   a range of streams (e.g. streams: ["0-3"])
    #
    streams: ["0-3"]

    # Stream stats can be enabled to provide fine grain packet and byte counters
    # for each thread/stream that is configured.
    #
    enable-stream-stats: no

    # When auto-config is enabled the streams will be created and assigned
    # automatically to the NUMA node where the thread resides.  If cpu-affinity
    # is enabled in the threading section.  Then the streams will be created
    # according to the number of worker threads specified in the worker-cpu-set.
    # Otherwise, the streams array is used to define the streams.
    #
    # This option is intended primarily to support legacy configurations.
    #
    # This option cannot be used simultaneously with either "use-all-streams"
    # or "hardware-bypass".
    #
    auto-config: yes

    # Enable hardware level flow bypass.
    #
    hardware-bypass: yes

    # Enable inline operation.  When enabled traffic arriving on a given port is
    # automatically forwarded out its peer port after analysis by Suricata.
    #
    inline: no

    # Ports indicates which Napatech ports are to be used in auto-config mode.
    # these are the port IDs of the ports that will be merged prior to the
    # traffic being distributed to the streams.
    #
    # When hardware-bypass is enabled the ports must be configured as a segment.
    # specify the port(s) on which upstream and downstream traffic will arrive.
    # This information is necessary for the hardware to properly process flows.
    #
    # When using a tap configuration one of the ports will receive inbound traffic
    # for the network and the other will receive outbound traffic. The two ports on a
    # given segment must reside on the same network adapter.
    #
    # When using a SPAN-port configuration the upstream and downstream traffic
    # arrives on a single port. This is configured by setting the two sides of the
    # segment to reference the same port.  (e.g. 0-0 to configure a SPAN port on
    # port 0).
    #
    # port segments are specified in the form:
    #    ports: [0-1,2-3,4-5,6-6,7-7]
    #
    # For legacy systems when hardware-bypass is disabled this can be specified in any
    # of the following ways:
    #
    #   a list of individual ports (e.g. ports: [0,1,2,3])
    #
    #   a range of ports (e.g. ports: [0-3])
    #
    #   "all" to indicate that all ports are to be merged together
    #   (e.g. ports: [all])
    #
    # This parameter has no effect if auto-config is disabled.
    #
    ports: [0-1,2-3]

    # When auto-config is enabled the hashmode specifies the algorithm for
    # determining to which stream a given packet is to be delivered.
    # This can be any valid Napatech NTPL hashmode command.
    #
    # The most common hashmode commands are:  hash2tuple, hash2tuplesorted,
    # hash5tuple, hash5tuplesorted and roundrobin.
    #
    # See Napatech NTPL documentation other hashmodes and details on their use.
    #
    # This parameter has no effect if auto-config is disabled.
    #
    hashmode: hash5tuplesorted

##
## Configure Suricata to load Suricata-Update managed rules.
##

# As VyOS leverages suricata-update, the default rule path points to the
# generated rules instead of the built-in rules.
#
# default-rule-path: /etc/suricata/rules
default-rule-path: /var/lib/suricata/rules

rule-files:
  - suricata.rules

##
## Auxiliary configuration files.
##

# As VyOS leverages suricata-update, the classification file points to the
# generated classification instead of the built-in one.
#
# classification-file: /etc/suricata/classification.config
classification-file: /var/lib/suricata/rules/classification.config
reference-config-file: /etc/suricata/reference.config
# threshold-file: /etc/suricata/threshold.config

##
## Include other configs
##

# Includes:  Files included here will be handled as if they were in-lined
# in this configuration file. Files with relative pathnames will be
# searched for in the same directory as this configuration file. You may
# use absolute pathnames too.
# You can specify more than 2 configuration files, if needed.
#include: include1.yaml
#include: include2.yaml