diff options
author | Yves-Alexis Perez <corsac@debian.org> | 2015-06-01 14:46:30 +0200 |
---|---|---|
committer | Yves-Alexis Perez <corsac@debian.org> | 2015-06-01 14:46:30 +0200 |
commit | fc556ec2bc92a9d476c11406fad2c33db8bf7cb0 (patch) | |
tree | 7360889e50de867d72741213d534a756c73902c8 /src/libstrongswan/plugins/aesni/aesni_ccm.c | |
parent | 83b8aebb19fe6e49e13a05d4e8f5ab9a06177642 (diff) | |
download | vyos-strongswan-fc556ec2bc92a9d476c11406fad2c33db8bf7cb0.tar.gz vyos-strongswan-fc556ec2bc92a9d476c11406fad2c33db8bf7cb0.zip |
Imported Upstream version 5.3.1
Diffstat (limited to 'src/libstrongswan/plugins/aesni/aesni_ccm.c')
-rw-r--r-- | src/libstrongswan/plugins/aesni/aesni_ccm.c | 914 |
1 files changed, 914 insertions, 0 deletions
diff --git a/src/libstrongswan/plugins/aesni/aesni_ccm.c b/src/libstrongswan/plugins/aesni/aesni_ccm.c new file mode 100644 index 000000000..d523bc17a --- /dev/null +++ b/src/libstrongswan/plugins/aesni/aesni_ccm.c @@ -0,0 +1,914 @@ +/* + * Copyright (C) 2010-2015 Martin Willi + * Copyright (C) 2010-2015 revosec AG + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + */ + +#include "aesni_ccm.h" +#include "aesni_key.h" + +#include <crypto/iv/iv_gen_seq.h> + +#include <tmmintrin.h> + +#define SALT_SIZE 3 +#define IV_SIZE 8 +#define NONCE_SIZE (SALT_SIZE + IV_SIZE) /* 11 */ +#define Q_SIZE (AES_BLOCK_SIZE - NONCE_SIZE - 1) /* 4 */ + +typedef struct private_aesni_ccm_t private_aesni_ccm_t; + +/** + * CCM en/decryption method type + */ +typedef void (*aesni_ccm_fn_t)(private_aesni_ccm_t*, size_t, u_char*, u_char*, + u_char*, size_t, u_char*, u_char*); + +/** + * Private data of an aesni_ccm_t object. + */ +struct private_aesni_ccm_t { + + /** + * Public aesni_ccm_t interface. + */ + aesni_ccm_t public; + + /** + * Encryption key schedule + */ + aesni_key_t *key; + + /** + * IV generator. + */ + iv_gen_t *iv_gen; + + /** + * Length of the integrity check value + */ + size_t icv_size; + + /** + * Length of the key in bytes + */ + size_t key_size; + + /** + * CCM encryption function + */ + aesni_ccm_fn_t encrypt; + + /** + * CCM decryption function + */ + aesni_ccm_fn_t decrypt; + + /** + * salt to add to nonce + */ + u_char salt[SALT_SIZE]; +}; + +/** + * First block with control information + */ +typedef struct __attribute__((packed)) { + BITFIELD4(u_int8_t, + /* size of p length field q, as q-1 */ + q_len: 3, + /* size of our ICV t, as (t-2)/2 */ + t_len: 3, + /* do we have associated data */ + assoc: 1, + reserved: 1, + ) flags; + /* nonce value */ + struct __attribute__((packed)) { + u_char salt[SALT_SIZE]; + u_char iv[IV_SIZE]; + } nonce; + /* length of plain text, q */ + u_char q[Q_SIZE]; +} b0_t; + +/** + * Counter block + */ +typedef struct __attribute__((packed)) { + BITFIELD3(u_int8_t, + /* size of p length field q, as q-1 */ + q_len: 3, + zero: 3, + reserved: 2, + ) flags; + /* nonce value */ + struct __attribute__((packed)) { + u_char salt[SALT_SIZE]; + u_char iv[IV_SIZE]; + } nonce; + /* counter value */ + u_char i[Q_SIZE]; +} ctr_t; + +/** + * Build the first block B0 + */ +static void build_b0(private_aesni_ccm_t *this, size_t len, size_t alen, + u_char *iv, void *out) +{ + b0_t *block = out; + + block->flags.reserved = 0; + block->flags.assoc = alen ? 1 : 0; + block->flags.t_len = (this->icv_size - 2) / 2; + block->flags.q_len = Q_SIZE - 1; + memcpy(block->nonce.salt, this->salt, SALT_SIZE); + memcpy(block->nonce.iv, iv, IV_SIZE); + htoun32(block->q, len); +} + +/** + * Build a counter block for counter i + */ +static void build_ctr(private_aesni_ccm_t *this, u_int32_t i, u_char *iv, + void *out) +{ + ctr_t *ctr = out; + + ctr->flags.reserved = 0; + ctr->flags.zero = 0; + ctr->flags.q_len = Q_SIZE - 1; + memcpy(ctr->nonce.salt, this->salt, SALT_SIZE); + memcpy(ctr->nonce.iv, iv, IV_SIZE); + htoun32(ctr->i, i); +} + +/** + * Calculate the ICV for the b0 and associated data + */ +static __m128i icv_header(private_aesni_ccm_t *this, size_t len, u_char *iv, + u_int16_t alen, u_char *assoc) +{ + __m128i *ks, b, t, c; + u_int i, round, blocks, rem; + + ks = this->key->schedule; + build_b0(this, len, alen, iv, &b); + c = _mm_loadu_si128(&b); + c = _mm_xor_si128(c, ks[0]); + for (round = 1; round < this->key->rounds; round++) + { + c = _mm_aesenc_si128(c, ks[round]); + } + c = _mm_aesenclast_si128(c, ks[this->key->rounds]); + + if (alen) + { + blocks = (alen + sizeof(alen)) / AES_BLOCK_SIZE; + rem = (alen + sizeof(alen)) % AES_BLOCK_SIZE; + if (rem) + { + blocks++; + } + for (i = 0; i < blocks; i++) + { + if (i == 0) + { /* first block */ + memset(&b, 0, sizeof(b)); + htoun16(&b, alen); + memcpy(((u_char*)&b) + sizeof(alen), assoc, + min(alen, sizeof(b) - sizeof(alen))); + t = _mm_loadu_si128(&b); + } + else if (i == blocks - 1 && rem) + { /* last block with padding */ + memset(&b, 0, sizeof(b)); + memcpy(&b, ((__m128i*)(assoc - sizeof(alen))) + i, rem); + t = _mm_loadu_si128(&b); + } + else + { /* full block */ + t = _mm_loadu_si128(((__m128i*)(assoc - sizeof(alen))) + i); + } + c = _mm_xor_si128(t, c); + c = _mm_xor_si128(c, ks[0]); + for (round = 1; round < this->key->rounds; round++) + { + c = _mm_aesenc_si128(c, ks[round]); + } + c = _mm_aesenclast_si128(c, ks[this->key->rounds]); + } + } + return c; +} + +/** + * En-/Decrypt the ICV, trim and store it + */ +static void crypt_icv(private_aesni_ccm_t *this, u_char *iv, + __m128i c, u_char *icv) +{ + __m128i *ks, b, t; + u_int round; + + ks = this->key->schedule; + build_ctr(this, 0, iv, &b); + + t = _mm_loadu_si128(&b); + t = _mm_xor_si128(t, ks[0]); + for (round = 1; round < this->key->rounds; round++) + { + t = _mm_aesenc_si128(t, ks[round]); + } + t = _mm_aesenclast_si128(t, ks[this->key->rounds]); + + t = _mm_xor_si128(t, c); + + _mm_storeu_si128(&b, t); + memcpy(icv, &b, this->icv_size); +} + +/** + * Do big-endian increment on x + */ +static inline __m128i increment_be(__m128i x) +{ + __m128i swap; + + swap = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); + + x = _mm_shuffle_epi8(x, swap); + x = _mm_add_epi64(x, _mm_set_epi32(0, 0, 0, 1)); + x = _mm_shuffle_epi8(x, swap); + + return x; +} + +/** + * Encrypt a remaining incomplete block + */ +static __m128i encrypt_ccm_rem(aesni_key_t *key, u_int rem, __m128i state, + void *in, void *out, __m128i c) +{ + __m128i *ks, t, b, d; + u_int round; + + ks = key->schedule; + memset(&b, 0, sizeof(b)); + memcpy(&b, in, rem); + d = _mm_loadu_si128(&b); + + c = _mm_xor_si128(d, c); + c = _mm_xor_si128(c, ks[0]); + t = _mm_xor_si128(state, ks[0]); + for (round = 1; round < key->rounds; round++) + { + c = _mm_aesenc_si128(c, ks[round]); + t = _mm_aesenc_si128(t, ks[round]); + } + c = _mm_aesenclast_si128(c, ks[key->rounds]); + t = _mm_aesenclast_si128(t, ks[key->rounds]); + + t = _mm_xor_si128(t, d); + _mm_storeu_si128(&b, t); + + memcpy(out, &b, rem); + + return c; +} + +/** + * Decrypt a remaining incomplete block + */ +static __m128i decrypt_ccm_rem(aesni_key_t *key, u_int rem, __m128i state, + void *in, void *out, __m128i c) +{ + __m128i *ks, t, b, d; + u_int round; + + ks = key->schedule; + memset(&b, 0, sizeof(b)); + memcpy(&b, in, rem); + d = _mm_loadu_si128(&b); + + t = _mm_xor_si128(state, ks[0]); + for (round = 1; round < key->rounds; round++) + { + t = _mm_aesenc_si128(t, ks[round]); + } + t = _mm_aesenclast_si128(t, ks[key->rounds]); + t = _mm_xor_si128(t, d); + _mm_storeu_si128(&b, t); + + memset((u_char*)&b + rem, 0, sizeof(b) - rem); + t = _mm_loadu_si128(&b); + c = _mm_xor_si128(t, c); + c = _mm_xor_si128(c, ks[0]); + for (round = 1; round < key->rounds; round++) + { + c = _mm_aesenc_si128(c, ks[round]); + } + c = _mm_aesenclast_si128(c, ks[key->rounds]); + + memcpy(out, &b, rem); + + return c; +} + +/** + * AES-128 CCM encryption/ICV generation + */ +static void encrypt_ccm128(private_aesni_ccm_t *this, + size_t len, u_char *in, u_char *out, u_char *iv, + size_t alen, u_char *assoc, u_char *icv) +{ + __m128i *ks, d, t, c, b, state, *bi, *bo; + u_int blocks, rem, i; + + c = icv_header(this, len, iv, alen, assoc); + build_ctr(this, 1, iv, &b); + state = _mm_load_si128(&b); + blocks = len / AES_BLOCK_SIZE; + rem = len % AES_BLOCK_SIZE; + bi = (__m128i*)in; + bo = (__m128i*)out; + + ks = this->key->schedule; + + for (i = 0; i < blocks; i++) + { + d = _mm_loadu_si128(bi + i); + + c = _mm_xor_si128(d, c); + c = _mm_xor_si128(c, ks[0]); + t = _mm_xor_si128(state, ks[0]); + + c = _mm_aesenc_si128(c, ks[1]); + t = _mm_aesenc_si128(t, ks[1]); + c = _mm_aesenc_si128(c, ks[2]); + t = _mm_aesenc_si128(t, ks[2]); + c = _mm_aesenc_si128(c, ks[3]); + t = _mm_aesenc_si128(t, ks[3]); + c = _mm_aesenc_si128(c, ks[4]); + t = _mm_aesenc_si128(t, ks[4]); + c = _mm_aesenc_si128(c, ks[5]); + t = _mm_aesenc_si128(t, ks[5]); + c = _mm_aesenc_si128(c, ks[6]); + t = _mm_aesenc_si128(t, ks[6]); + c = _mm_aesenc_si128(c, ks[7]); + t = _mm_aesenc_si128(t, ks[7]); + c = _mm_aesenc_si128(c, ks[8]); + t = _mm_aesenc_si128(t, ks[8]); + c = _mm_aesenc_si128(c, ks[9]); + t = _mm_aesenc_si128(t, ks[9]); + + c = _mm_aesenclast_si128(c, ks[10]); + t = _mm_aesenclast_si128(t, ks[10]); + + t = _mm_xor_si128(t, d); + _mm_storeu_si128(bo + i, t); + + state = increment_be(state); + } + + if (rem) + { + c = encrypt_ccm_rem(this->key, rem, state, bi + blocks, bo + blocks, c); + } + crypt_icv(this, iv, c, icv); +} + +/** + * AES-128 CCM decryption/ICV generation + */ +static void decrypt_ccm128(private_aesni_ccm_t *this, + size_t len, u_char *in, u_char *out, u_char *iv, + size_t alen, u_char *assoc, u_char *icv) +{ + __m128i *ks, d, t, c, b, state, *bi, *bo; + u_int blocks, rem, i; + + c = icv_header(this, len, iv, alen, assoc); + build_ctr(this, 1, iv, &b); + state = _mm_load_si128(&b); + blocks = len / AES_BLOCK_SIZE; + rem = len % AES_BLOCK_SIZE; + bi = (__m128i*)in; + bo = (__m128i*)out; + + ks = this->key->schedule; + + for (i = 0; i < blocks; i++) + { + d = _mm_loadu_si128(bi + i); + + t = _mm_xor_si128(state, ks[0]); + + t = _mm_aesenc_si128(t, ks[1]); + t = _mm_aesenc_si128(t, ks[2]); + t = _mm_aesenc_si128(t, ks[3]); + t = _mm_aesenc_si128(t, ks[4]); + t = _mm_aesenc_si128(t, ks[5]); + t = _mm_aesenc_si128(t, ks[6]); + t = _mm_aesenc_si128(t, ks[7]); + t = _mm_aesenc_si128(t, ks[8]); + t = _mm_aesenc_si128(t, ks[9]); + + t = _mm_aesenclast_si128(t, ks[10]); + t = _mm_xor_si128(t, d); + _mm_storeu_si128(bo + i, t); + + c = _mm_xor_si128(t, c); + c = _mm_xor_si128(c, ks[0]); + + c = _mm_aesenc_si128(c, ks[1]); + c = _mm_aesenc_si128(c, ks[2]); + c = _mm_aesenc_si128(c, ks[3]); + c = _mm_aesenc_si128(c, ks[4]); + c = _mm_aesenc_si128(c, ks[5]); + c = _mm_aesenc_si128(c, ks[6]); + c = _mm_aesenc_si128(c, ks[7]); + c = _mm_aesenc_si128(c, ks[8]); + c = _mm_aesenc_si128(c, ks[9]); + + c = _mm_aesenclast_si128(c, ks[10]); + + state = increment_be(state); + } + + if (rem) + { + c = decrypt_ccm_rem(this->key, rem, state, bi + blocks, bo + blocks, c); + } + crypt_icv(this, iv, c, icv); +} + +/** + * AES-192 CCM encryption/ICV generation + */ +static void encrypt_ccm192(private_aesni_ccm_t *this, + size_t len, u_char *in, u_char *out, u_char *iv, + size_t alen, u_char *assoc, u_char *icv) +{ + __m128i *ks, d, t, c, b, state, *bi, *bo; + u_int blocks, rem, i; + + c = icv_header(this, len, iv, alen, assoc); + build_ctr(this, 1, iv, &b); + state = _mm_load_si128(&b); + blocks = len / AES_BLOCK_SIZE; + rem = len % AES_BLOCK_SIZE; + bi = (__m128i*)in; + bo = (__m128i*)out; + + ks = this->key->schedule; + + for (i = 0; i < blocks; i++) + { + d = _mm_loadu_si128(bi + i); + + c = _mm_xor_si128(d, c); + c = _mm_xor_si128(c, ks[0]); + t = _mm_xor_si128(state, ks[0]); + + c = _mm_aesenc_si128(c, ks[1]); + t = _mm_aesenc_si128(t, ks[1]); + c = _mm_aesenc_si128(c, ks[2]); + t = _mm_aesenc_si128(t, ks[2]); + c = _mm_aesenc_si128(c, ks[3]); + t = _mm_aesenc_si128(t, ks[3]); + c = _mm_aesenc_si128(c, ks[4]); + t = _mm_aesenc_si128(t, ks[4]); + c = _mm_aesenc_si128(c, ks[5]); + t = _mm_aesenc_si128(t, ks[5]); + c = _mm_aesenc_si128(c, ks[6]); + t = _mm_aesenc_si128(t, ks[6]); + c = _mm_aesenc_si128(c, ks[7]); + t = _mm_aesenc_si128(t, ks[7]); + c = _mm_aesenc_si128(c, ks[8]); + t = _mm_aesenc_si128(t, ks[8]); + c = _mm_aesenc_si128(c, ks[9]); + t = _mm_aesenc_si128(t, ks[9]); + c = _mm_aesenc_si128(c, ks[10]); + t = _mm_aesenc_si128(t, ks[10]); + c = _mm_aesenc_si128(c, ks[11]); + t = _mm_aesenc_si128(t, ks[11]); + + c = _mm_aesenclast_si128(c, ks[12]); + t = _mm_aesenclast_si128(t, ks[12]); + + t = _mm_xor_si128(t, d); + _mm_storeu_si128(bo + i, t); + + state = increment_be(state); + } + + if (rem) + { + c = encrypt_ccm_rem(this->key, rem, state, bi + blocks, bo + blocks, c); + } + crypt_icv(this, iv, c, icv); +} + +/** + * AES-192 CCM decryption/ICV generation + */ +static void decrypt_ccm192(private_aesni_ccm_t *this, + size_t len, u_char *in, u_char *out, u_char *iv, + size_t alen, u_char *assoc, u_char *icv) +{ + __m128i *ks, d, t, c, b, state, *bi, *bo; + u_int blocks, rem, i; + + c = icv_header(this, len, iv, alen, assoc); + build_ctr(this, 1, iv, &b); + state = _mm_load_si128(&b); + blocks = len / AES_BLOCK_SIZE; + rem = len % AES_BLOCK_SIZE; + bi = (__m128i*)in; + bo = (__m128i*)out; + + ks = this->key->schedule; + + for (i = 0; i < blocks; i++) + { + d = _mm_loadu_si128(bi + i); + + t = _mm_xor_si128(state, ks[0]); + + t = _mm_aesenc_si128(t, ks[1]); + t = _mm_aesenc_si128(t, ks[2]); + t = _mm_aesenc_si128(t, ks[3]); + t = _mm_aesenc_si128(t, ks[4]); + t = _mm_aesenc_si128(t, ks[5]); + t = _mm_aesenc_si128(t, ks[6]); + t = _mm_aesenc_si128(t, ks[7]); + t = _mm_aesenc_si128(t, ks[8]); + t = _mm_aesenc_si128(t, ks[9]); + t = _mm_aesenc_si128(t, ks[10]); + t = _mm_aesenc_si128(t, ks[11]); + + t = _mm_aesenclast_si128(t, ks[12]); + t = _mm_xor_si128(t, d); + _mm_storeu_si128(bo + i, t); + + c = _mm_xor_si128(t, c); + c = _mm_xor_si128(c, ks[0]); + + c = _mm_aesenc_si128(c, ks[1]); + c = _mm_aesenc_si128(c, ks[2]); + c = _mm_aesenc_si128(c, ks[3]); + c = _mm_aesenc_si128(c, ks[4]); + c = _mm_aesenc_si128(c, ks[5]); + c = _mm_aesenc_si128(c, ks[6]); + c = _mm_aesenc_si128(c, ks[7]); + c = _mm_aesenc_si128(c, ks[8]); + c = _mm_aesenc_si128(c, ks[9]); + c = _mm_aesenc_si128(c, ks[10]); + c = _mm_aesenc_si128(c, ks[11]); + + c = _mm_aesenclast_si128(c, ks[12]); + + state = increment_be(state); + } + + if (rem) + { + c = decrypt_ccm_rem(this->key, rem, state, bi + blocks, bo + blocks, c); + } + crypt_icv(this, iv, c, icv); +} + +/** + * AES-256 CCM encryption/ICV generation + */ +static void encrypt_ccm256(private_aesni_ccm_t *this, + size_t len, u_char *in, u_char *out, u_char *iv, + size_t alen, u_char *assoc, u_char *icv) +{ + __m128i *ks, d, t, c, b, state, *bi, *bo; + u_int blocks, rem, i; + + c = icv_header(this, len, iv, alen, assoc); + build_ctr(this, 1, iv, &b); + state = _mm_load_si128(&b); + blocks = len / AES_BLOCK_SIZE; + rem = len % AES_BLOCK_SIZE; + bi = (__m128i*)in; + bo = (__m128i*)out; + + ks = this->key->schedule; + + for (i = 0; i < blocks; i++) + { + d = _mm_loadu_si128(bi + i); + + c = _mm_xor_si128(d, c); + c = _mm_xor_si128(c, ks[0]); + t = _mm_xor_si128(state, ks[0]); + + c = _mm_aesenc_si128(c, ks[1]); + t = _mm_aesenc_si128(t, ks[1]); + c = _mm_aesenc_si128(c, ks[2]); + t = _mm_aesenc_si128(t, ks[2]); + c = _mm_aesenc_si128(c, ks[3]); + t = _mm_aesenc_si128(t, ks[3]); + c = _mm_aesenc_si128(c, ks[4]); + t = _mm_aesenc_si128(t, ks[4]); + c = _mm_aesenc_si128(c, ks[5]); + t = _mm_aesenc_si128(t, ks[5]); + c = _mm_aesenc_si128(c, ks[6]); + t = _mm_aesenc_si128(t, ks[6]); + c = _mm_aesenc_si128(c, ks[7]); + t = _mm_aesenc_si128(t, ks[7]); + c = _mm_aesenc_si128(c, ks[8]); + t = _mm_aesenc_si128(t, ks[8]); + c = _mm_aesenc_si128(c, ks[9]); + t = _mm_aesenc_si128(t, ks[9]); + c = _mm_aesenc_si128(c, ks[10]); + t = _mm_aesenc_si128(t, ks[10]); + c = _mm_aesenc_si128(c, ks[11]); + t = _mm_aesenc_si128(t, ks[11]); + c = _mm_aesenc_si128(c, ks[12]); + t = _mm_aesenc_si128(t, ks[12]); + c = _mm_aesenc_si128(c, ks[13]); + t = _mm_aesenc_si128(t, ks[13]); + + c = _mm_aesenclast_si128(c, ks[14]); + t = _mm_aesenclast_si128(t, ks[14]); + + t = _mm_xor_si128(t, d); + _mm_storeu_si128(bo + i, t); + + state = increment_be(state); + } + + if (rem) + { + c = encrypt_ccm_rem(this->key, rem, state, bi + blocks, bo + blocks, c); + } + crypt_icv(this, iv, c, icv); +} + +/** + * AES-256 CCM decryption/ICV generation + */ +static void decrypt_ccm256(private_aesni_ccm_t *this, + size_t len, u_char *in, u_char *out, u_char *iv, + size_t alen, u_char *assoc, u_char *icv) +{ + __m128i *ks, d, t, c, b, state, *bi, *bo; + u_int blocks, rem, i; + + c = icv_header(this, len, iv, alen, assoc); + build_ctr(this, 1, iv, &b); + state = _mm_load_si128(&b); + blocks = len / AES_BLOCK_SIZE; + rem = len % AES_BLOCK_SIZE; + bi = (__m128i*)in; + bo = (__m128i*)out; + + ks = this->key->schedule; + + for (i = 0; i < blocks; i++) + { + d = _mm_loadu_si128(bi + i); + + t = _mm_xor_si128(state, ks[0]); + + t = _mm_aesenc_si128(t, ks[1]); + t = _mm_aesenc_si128(t, ks[2]); + t = _mm_aesenc_si128(t, ks[3]); + t = _mm_aesenc_si128(t, ks[4]); + t = _mm_aesenc_si128(t, ks[5]); + t = _mm_aesenc_si128(t, ks[6]); + t = _mm_aesenc_si128(t, ks[7]); + t = _mm_aesenc_si128(t, ks[8]); + t = _mm_aesenc_si128(t, ks[9]); + t = _mm_aesenc_si128(t, ks[10]); + t = _mm_aesenc_si128(t, ks[11]); + t = _mm_aesenc_si128(t, ks[12]); + t = _mm_aesenc_si128(t, ks[13]); + + t = _mm_aesenclast_si128(t, ks[14]); + t = _mm_xor_si128(t, d); + _mm_storeu_si128(bo + i, t); + + c = _mm_xor_si128(t, c); + c = _mm_xor_si128(c, ks[0]); + + c = _mm_aesenc_si128(c, ks[1]); + c = _mm_aesenc_si128(c, ks[2]); + c = _mm_aesenc_si128(c, ks[3]); + c = _mm_aesenc_si128(c, ks[4]); + c = _mm_aesenc_si128(c, ks[5]); + c = _mm_aesenc_si128(c, ks[6]); + c = _mm_aesenc_si128(c, ks[7]); + c = _mm_aesenc_si128(c, ks[8]); + c = _mm_aesenc_si128(c, ks[9]); + c = _mm_aesenc_si128(c, ks[10]); + c = _mm_aesenc_si128(c, ks[11]); + c = _mm_aesenc_si128(c, ks[12]); + c = _mm_aesenc_si128(c, ks[13]); + + c = _mm_aesenclast_si128(c, ks[14]); + + state = increment_be(state); + } + + if (rem) + { + c = decrypt_ccm_rem(this->key, rem, state, bi + blocks, bo + blocks, c); + } + crypt_icv(this, iv, c, icv); +} + +METHOD(aead_t, encrypt, bool, + private_aesni_ccm_t *this, chunk_t plain, chunk_t assoc, chunk_t iv, + chunk_t *encr) +{ + u_char *out; + + if (!this->key || iv.len != IV_SIZE) + { + return FALSE; + } + out = plain.ptr; + if (encr) + { + *encr = chunk_alloc(plain.len + this->icv_size); + out = encr->ptr; + } + this->encrypt(this, plain.len, plain.ptr, out, iv.ptr, + assoc.len, assoc.ptr, out + plain.len); + return TRUE; +} + +METHOD(aead_t, decrypt, bool, + private_aesni_ccm_t *this, chunk_t encr, chunk_t assoc, chunk_t iv, + chunk_t *plain) +{ + u_char *out, icv[this->icv_size]; + + if (!this->key || iv.len != IV_SIZE || encr.len < this->icv_size) + { + return FALSE; + } + encr.len -= this->icv_size; + out = encr.ptr; + if (plain) + { + *plain = chunk_alloc(encr.len); + out = plain->ptr; + } + + this->decrypt(this, encr.len, encr.ptr, out, iv.ptr, + assoc.len, assoc.ptr, icv); + return memeq_const(icv, encr.ptr + encr.len, this->icv_size); +} + +METHOD(aead_t, get_block_size, size_t, + private_aesni_ccm_t *this) +{ + return 1; +} + +METHOD(aead_t, get_icv_size, size_t, + private_aesni_ccm_t *this) +{ + return this->icv_size; +} + +METHOD(aead_t, get_iv_size, size_t, + private_aesni_ccm_t *this) +{ + return IV_SIZE; +} + +METHOD(aead_t, get_iv_gen, iv_gen_t*, + private_aesni_ccm_t *this) +{ + return this->iv_gen; +} + +METHOD(aead_t, get_key_size, size_t, + private_aesni_ccm_t *this) +{ + return this->key_size + SALT_SIZE; +} + +METHOD(aead_t, set_key, bool, + private_aesni_ccm_t *this, chunk_t key) +{ + if (key.len != this->key_size + SALT_SIZE) + { + return FALSE; + } + + memcpy(this->salt, key.ptr + key.len - SALT_SIZE, SALT_SIZE); + key.len -= SALT_SIZE; + + DESTROY_IF(this->key); + this->key = aesni_key_create(TRUE, key); + return TRUE; +} + +METHOD(aead_t, destroy, void, + private_aesni_ccm_t *this) +{ + DESTROY_IF(this->key); + this->iv_gen->destroy(this->iv_gen); + free_align(this); +} + +/** + * See header + */ +aesni_ccm_t *aesni_ccm_create(encryption_algorithm_t algo, + size_t key_size, size_t salt_size) +{ + private_aesni_ccm_t *this; + size_t icv_size; + + switch (key_size) + { + case 0: + key_size = 16; + break; + case 16: + case 24: + case 32: + break; + default: + return NULL; + } + if (salt_size && salt_size != SALT_SIZE) + { + /* currently not supported */ + return NULL; + } + switch (algo) + { + case ENCR_AES_CCM_ICV8: + algo = ENCR_AES_CBC; + icv_size = 8; + break; + case ENCR_AES_CCM_ICV12: + algo = ENCR_AES_CBC; + icv_size = 12; + break; + case ENCR_AES_CCM_ICV16: + algo = ENCR_AES_CBC; + icv_size = 16; + break; + default: + return NULL; + } + + INIT_ALIGN(this, sizeof(__m128i), + .public = { + .aead = { + .encrypt = _encrypt, + .decrypt = _decrypt, + .get_block_size = _get_block_size, + .get_icv_size = _get_icv_size, + .get_iv_size = _get_iv_size, + .get_iv_gen = _get_iv_gen, + .get_key_size = _get_key_size, + .set_key = _set_key, + .destroy = _destroy, + }, + }, + .key_size = key_size, + .iv_gen = iv_gen_seq_create(), + .icv_size = icv_size, + ); + + switch (key_size) + { + case 16: + this->encrypt = encrypt_ccm128; + this->decrypt = decrypt_ccm128; + break; + case 24: + this->encrypt = encrypt_ccm192; + this->decrypt = decrypt_ccm192; + break; + case 32: + this->encrypt = encrypt_ccm256; + this->decrypt = decrypt_ccm256; + break; + } + + return &this->public; +} |