summaryrefslogtreecommitdiff
path: root/src/pluto/pkcs1.c
diff options
context:
space:
mode:
authorRene Mayrhofer <rene@mayrhofer.eu.org>2009-06-23 11:35:38 +0000
committerRene Mayrhofer <rene@mayrhofer.eu.org>2009-06-23 11:35:38 +0000
commit7c52c3f35cdbdff58443b994f2f33d13b4d81f57 (patch)
treee54a27979ea72ec41702bec2984c2eadac3b8862 /src/pluto/pkcs1.c
parent4ef45ba0404dac3773e83af995a5ec584b23d633 (diff)
downloadvyos-strongswan-7c52c3f35cdbdff58443b994f2f33d13b4d81f57.tar.gz
vyos-strongswan-7c52c3f35cdbdff58443b994f2f33d13b4d81f57.zip
Updated to new upstream version.
Diffstat (limited to 'src/pluto/pkcs1.c')
-rw-r--r--src/pluto/pkcs1.c676
1 files changed, 0 insertions, 676 deletions
diff --git a/src/pluto/pkcs1.c b/src/pluto/pkcs1.c
deleted file mode 100644
index 49a06a8bc..000000000
--- a/src/pluto/pkcs1.c
+++ /dev/null
@@ -1,676 +0,0 @@
-/* Support of PKCS#1 private key data structures
- * Copyright (C) 2005 Jan Hutter, Martin Willi
- * Copyright (C) 2002-2005 Andreas Steffen
- * Hochschule fuer Technik Rapperswil, Switzerland
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * for more details.
- *
- * RCSID $Id: pkcs1.c 3427 2008-01-27 20:17:15Z andreas $
- */
-
-#include <stddef.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include <freeswan.h>
-#include <libsha2/sha2.h>
-
-#include "constants.h"
-#include "defs.h"
-#include "mp_defs.h"
-#include "asn1.h"
-#include <asn1/oid.h>
-#include "log.h"
-#include "pkcs1.h"
-#include "md2.h"
-#include "md5.h"
-#include "sha1.h"
-#include "rnd.h"
-
-const struct fld RSA_private_field[] =
-{
- { "Modulus", offsetof(RSA_private_key_t, pub.n) },
- { "PublicExponent", offsetof(RSA_private_key_t, pub.e) },
-
- { "PrivateExponent", offsetof(RSA_private_key_t, d) },
- { "Prime1", offsetof(RSA_private_key_t, p) },
- { "Prime2", offsetof(RSA_private_key_t, q) },
- { "Exponent1", offsetof(RSA_private_key_t, dP) },
- { "Exponent2", offsetof(RSA_private_key_t, dQ) },
- { "Coefficient", offsetof(RSA_private_key_t, qInv) },
-};
-
-/* ASN.1 definition of a PKCS#1 RSA private key */
-
-static const asn1Object_t privkeyObjects[] = {
- { 0, "RSAPrivateKey", ASN1_SEQUENCE, ASN1_NONE }, /* 0 */
- { 1, "version", ASN1_INTEGER, ASN1_BODY }, /* 1 */
- { 1, "modulus", ASN1_INTEGER, ASN1_BODY }, /* 2 */
- { 1, "publicExponent", ASN1_INTEGER, ASN1_BODY }, /* 3 */
- { 1, "privateExponent", ASN1_INTEGER, ASN1_BODY }, /* 4 */
- { 1, "prime1", ASN1_INTEGER, ASN1_BODY }, /* 5 */
- { 1, "prime2", ASN1_INTEGER, ASN1_BODY }, /* 6 */
- { 1, "exponent1", ASN1_INTEGER, ASN1_BODY }, /* 7 */
- { 1, "exponent2", ASN1_INTEGER, ASN1_BODY }, /* 8 */
- { 1, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 9 */
- { 1, "otherPrimeInfos", ASN1_SEQUENCE, ASN1_OPT |
- ASN1_LOOP }, /* 10 */
- { 2, "otherPrimeInfo", ASN1_SEQUENCE, ASN1_NONE }, /* 11 */
- { 3, "prime", ASN1_INTEGER, ASN1_BODY }, /* 12 */
- { 3, "exponent", ASN1_INTEGER, ASN1_BODY }, /* 13 */
- { 3, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 14 */
- { 1, "end opt or loop", ASN1_EOC, ASN1_END } /* 15 */
-};
-
-#define PKCS1_PRIV_KEY_VERSION 1
-#define PKCS1_PRIV_KEY_MODULUS 2
-#define PKCS1_PRIV_KEY_PUB_EXP 3
-#define PKCS1_PRIV_KEY_COEFF 9
-#define PKCS1_PRIV_KEY_ROOF 16
-
-
-/*
- * forms the FreeS/WAN keyid from the public exponent e and modulus n
- */
-void
-form_keyid(chunk_t e, chunk_t n, char* keyid, unsigned *keysize)
-{
- /* eliminate leading zero bytes in modulus from ASN.1 coding */
- while (n.len > 1 && *n.ptr == 0x00)
- {
- n.ptr++; n.len--;
- }
-
- /* form the FreeS/WAN keyid */
- keyid[0] = '\0'; /* in case of splitkeytoid failure */
- splitkeytoid(e.ptr, e.len, n.ptr, n.len, keyid, KEYID_BUF);
-
- /* return the RSA modulus size in octets */
- *keysize = n.len;
-}
-
-/*
- * initialize an RSA_public_key_t object
- */
-void
-init_RSA_public_key(RSA_public_key_t *rsa, chunk_t e, chunk_t n)
-{
- n_to_mpz(&rsa->e, e.ptr, e.len);
- n_to_mpz(&rsa->n, n.ptr, n.len);
-
- form_keyid(e, n, rsa->keyid, &rsa->k);
-}
-
-#ifdef DEBUG
-static void
-RSA_show_key_fields(RSA_private_key_t *k, int fieldcnt)
-{
- const struct fld *p;
-
- DBG_log(" keyid: *%s", k->pub.keyid);
-
- for (p = RSA_private_field; p < &RSA_private_field[fieldcnt]; p++)
- {
- MP_INT *n = (MP_INT *) ((char *)k + p->offset);
- size_t sz = mpz_sizeinbase(n, 16);
- char buf[RSA_MAX_OCTETS * 2 + 2]; /* ought to be big enough */
-
- passert(sz <= sizeof(buf));
- mpz_get_str(buf, 16, n);
-
- DBG_log(" %s: 0x%s", p->name, buf);
- }
-}
-
-/* debugging info that compromises security! */
-void
-RSA_show_private_key(RSA_private_key_t *k)
-{
- RSA_show_key_fields(k, elemsof(RSA_private_field));
-}
-
-void
-RSA_show_public_key(RSA_public_key_t *k)
-{
- /* Kludge: pretend that it is a private key, but only display the
- * first two fields (which are the public key).
- */
- passert(offsetof(RSA_private_key_t, pub) == 0);
- RSA_show_key_fields((RSA_private_key_t *)k, 2);
-}
-#endif
-
-err_t
-RSA_private_key_sanity(RSA_private_key_t *k)
-{
- /* note that the *last* error found is reported */
- err_t ugh = NULL;
- mpz_t t, u, q1;
-
-#ifdef DEBUG /* debugging info that compromises security */
- DBG(DBG_PRIVATE, RSA_show_private_key(k));
-#endif
-
- /* PKCS#1 1.5 section 6 requires modulus to have at least 12 octets.
- * We actually require more (for security).
- */
- if (k->pub.k < RSA_MIN_OCTETS)
- return RSA_MIN_OCTETS_UGH;
-
- /* we picked a max modulus size to simplify buffer allocation */
- if (k->pub.k > RSA_MAX_OCTETS)
- return RSA_MAX_OCTETS_UGH;
-
- mpz_init(t);
- mpz_init(u);
- mpz_init(q1);
-
- /* check that n == p * q */
- mpz_mul(u, &k->p, &k->q);
- if (mpz_cmp(u, &k->pub.n) != 0)
- ugh = "n != p * q";
-
- /* check that e divides neither p-1 nor q-1 */
- mpz_sub_ui(t, &k->p, 1);
- mpz_mod(t, t, &k->pub.e);
- if (mpz_cmp_ui(t, 0) == 0)
- ugh = "e divides p-1";
-
- mpz_sub_ui(t, &k->q, 1);
- mpz_mod(t, t, &k->pub.e);
- if (mpz_cmp_ui(t, 0) == 0)
- ugh = "e divides q-1";
-
- /* check that d is e^-1 (mod lcm(p-1, q-1)) */
- /* see PKCS#1v2, aka RFC 2437, for the "lcm" */
- mpz_sub_ui(q1, &k->q, 1);
- mpz_sub_ui(u, &k->p, 1);
- mpz_gcd(t, u, q1); /* t := gcd(p-1, q-1) */
- mpz_mul(u, u, q1); /* u := (p-1) * (q-1) */
- mpz_divexact(u, u, t); /* u := lcm(p-1, q-1) */
-
- mpz_mul(t, &k->d, &k->pub.e);
- mpz_mod(t, t, u);
- if (mpz_cmp_ui(t, 1) != 0)
- ugh = "(d * e) mod (lcm(p-1, q-1)) != 1";
-
- /* check that dP is d mod (p-1) */
- mpz_sub_ui(u, &k->p, 1);
- mpz_mod(t, &k->d, u);
- if (mpz_cmp(t, &k->dP) != 0)
- ugh = "dP is not congruent to d mod (p-1)";
-
- /* check that dQ is d mod (q-1) */
- mpz_sub_ui(u, &k->q, 1);
- mpz_mod(t, &k->d, u);
- if (mpz_cmp(t, &k->dQ) != 0)
- ugh = "dQ is not congruent to d mod (q-1)";
-
- /* check that qInv is (q^-1) mod p */
- mpz_mul(t, &k->qInv, &k->q);
- mpz_mod(t, t, &k->p);
- if (mpz_cmp_ui(t, 1) != 0)
- ugh = "qInv is not conguent ot (q^-1) mod p";
-
- mpz_clear(t);
- mpz_clear(u);
- mpz_clear(q1);
- return ugh;
-}
-
-/*
- * Check the equality of two RSA public keys
- */
-bool
-same_RSA_public_key(const RSA_public_key_t *a, const RSA_public_key_t *b)
-{
- return a == b
- || (a->k == b->k && mpz_cmp(&a->n, &b->n) == 0 && mpz_cmp(&a->e, &b->e) == 0);
-}
-
-/*
- * Parses a PKCS#1 private key
- */
-bool
-pkcs1_parse_private_key(chunk_t blob, RSA_private_key_t *key)
-{
- err_t ugh = NULL;
- asn1_ctx_t ctx;
- chunk_t object, modulus, exp;
- u_int level;
- int objectID = 0;
-
- asn1_init(&ctx, blob, 0, FALSE, DBG_PRIVATE);
-
- while (objectID < PKCS1_PRIV_KEY_ROOF) {
-
- if (!extract_object(privkeyObjects, &objectID, &object, &level, &ctx))
- return FALSE;
-
- if (objectID == PKCS1_PRIV_KEY_VERSION)
- {
- if (object.len > 0 && *object.ptr != 0)
- {
- plog(" wrong PKCS#1 private key version");
- return FALSE;
- }
- }
- else if (objectID >= PKCS1_PRIV_KEY_MODULUS &&
- objectID <= PKCS1_PRIV_KEY_COEFF)
- {
- MP_INT *u = (MP_INT *) ((char *)key
- + RSA_private_field[objectID - PKCS1_PRIV_KEY_MODULUS].offset);
-
- n_to_mpz(u, object.ptr, object.len);
-
- if (objectID == PKCS1_PRIV_KEY_MODULUS)
- modulus = object;
- else if (objectID == PKCS1_PRIV_KEY_PUB_EXP)
- exp = object;
- }
- objectID++;
- }
- form_keyid(exp, modulus, key->pub.keyid, &key->pub.k);
- ugh = RSA_private_key_sanity(key);
- return (ugh == NULL);
-}
-
-/*
- * compute a digest over a binary blob
- */
-bool
-compute_digest(chunk_t tbs, int alg, chunk_t *digest)
-{
- switch (alg)
- {
- case OID_MD2:
- case OID_MD2_WITH_RSA:
- {
- MD2_CTX context;
-
- MD2Init(&context);
- MD2Update(&context, tbs.ptr, tbs.len);
- MD2Final(digest->ptr, &context);
- digest->len = MD2_DIGEST_SIZE;
- return TRUE;
- }
- case OID_MD5:
- case OID_MD5_WITH_RSA:
- {
- MD5_CTX context;
-
- MD5Init(&context);
- MD5Update(&context, tbs.ptr, tbs.len);
- MD5Final(digest->ptr, &context);
- digest->len = MD5_DIGEST_SIZE;
- return TRUE;
- }
- case OID_SHA1:
- case OID_SHA1_WITH_RSA:
- case OID_SHA1_WITH_RSA_OIW:
- {
- SHA1_CTX context;
-
- SHA1Init(&context);
- SHA1Update(&context, tbs.ptr, tbs.len);
- SHA1Final(digest->ptr, &context);
- digest->len = SHA1_DIGEST_SIZE;
- return TRUE;
- }
- case OID_SHA256:
- case OID_SHA256_WITH_RSA:
- {
- sha256_context context;
-
- sha256_init(&context);
- sha256_write(&context, tbs.ptr, tbs.len);
- sha256_final(&context);
- memcpy(digest->ptr, context.sha_out, SHA2_256_DIGEST_SIZE);
- digest->len = SHA2_256_DIGEST_SIZE;
- return TRUE;
- }
- case OID_SHA384:
- case OID_SHA384_WITH_RSA:
- {
- sha512_context context;
-
- sha384_init(&context);
- sha512_write(&context, tbs.ptr, tbs.len);
- sha512_final(&context);
- memcpy(digest->ptr, context.sha_out, SHA2_384_DIGEST_SIZE);
- digest->len = SHA2_384_DIGEST_SIZE;
- return TRUE;
- }
- case OID_SHA512:
- case OID_SHA512_WITH_RSA:
- {
- sha512_context context;
-
- sha512_init(&context);
- sha512_write(&context, tbs.ptr, tbs.len);
- sha512_final(&context);
- memcpy(digest->ptr, context.sha_out, SHA2_512_DIGEST_SIZE);
- digest->len = SHA2_512_DIGEST_SIZE;
- return TRUE;
- }
- default:
- digest->len = 0;
- return FALSE;
- }
-}
-
-/*
- * compute an RSA signature with PKCS#1 padding
- */
-void
-sign_hash(const RSA_private_key_t *k, const u_char *hash_val, size_t hash_len
- , u_char *sig_val, size_t sig_len)
-{
- chunk_t ch;
- mpz_t t1, t2;
- size_t padlen;
- u_char *p = sig_val;
-
- DBG(DBG_CONTROL | DBG_CRYPT,
- DBG_log("signing hash with RSA Key *%s", k->pub.keyid)
- )
- /* PKCS#1 v1.5 8.1 encryption-block formatting */
- *p++ = 0x00;
- *p++ = 0x01; /* BT (block type) 01 */
- padlen = sig_len - 3 - hash_len;
- memset(p, 0xFF, padlen);
- p += padlen;
- *p++ = 0x00;
- memcpy(p, hash_val, hash_len);
- passert(p + hash_len - sig_val == (ptrdiff_t)sig_len);
-
- /* PKCS#1 v1.5 8.2 octet-string-to-integer conversion */
- n_to_mpz(t1, sig_val, sig_len); /* (could skip leading 0x00) */
-
- /* PKCS#1 v1.5 8.3 RSA computation y = x^c mod n
- * Better described in PKCS#1 v2.0 5.1 RSADP.
- * There are two methods, depending on the form of the private key.
- * We use the one based on the Chinese Remainder Theorem.
- */
- mpz_init(t2);
-
- mpz_powm(t2, t1, &k->dP, &k->p); /* m1 = c^dP mod p */
-
- mpz_powm(t1, t1, &k->dQ, &k->q); /* m2 = c^dQ mod Q */
-
- mpz_sub(t2, t2, t1); /* h = qInv (m1 - m2) mod p */
- mpz_mod(t2, t2, &k->p);
- mpz_mul(t2, t2, &k->qInv);
- mpz_mod(t2, t2, &k->p);
-
- mpz_mul(t2, t2, &k->q); /* m = m2 + h q */
- mpz_add(t1, t1, t2);
-
- /* PKCS#1 v1.5 8.4 integer-to-octet-string conversion */
- ch = mpz_to_n(t1, sig_len);
- memcpy(sig_val, ch.ptr, sig_len);
- pfree(ch.ptr);
-
- mpz_clear(t1);
- mpz_clear(t2);
-}
-
-/*
- * encrypt data with an RSA public key after padding
- */
-chunk_t
-RSA_encrypt(const RSA_public_key_t *key, chunk_t in)
-{
- u_char padded[RSA_MAX_OCTETS];
- u_char *pos = padded;
- int padding = key->k - in.len - 3;
- int i;
-
- if (padding < 8 || key->k > RSA_MAX_OCTETS)
- return empty_chunk;
-
- /* add padding according to PKCS#1 7.2.1 1.+2. */
- *pos++ = 0x00;
- *pos++ = 0x02;
-
- /* pad with pseudo random bytes unequal to zero */
- for (i = 0; i < padding; i++)
- {
- get_rnd_bytes(pos, padding);
- while (!*pos)
- {
- get_rnd_bytes(pos, 1);
- }
- pos++;
- }
-
- /* append the padding terminator */
- *pos++ = 0x00;
-
- /* now add the data */
- memcpy(pos, in.ptr, in.len);
- DBG(DBG_RAW,
- DBG_dump_chunk("data for rsa encryption:\n", in);
- DBG_dump("padded data for rsa encryption:\n", padded, key->k)
- )
-
- /* convert chunk to integer (PKCS#1 7.2.1 3.a) */
- {
- chunk_t out;
- mpz_t m, c;
-
- mpz_init(c);
- n_to_mpz(m, padded, key->k);
-
- /* encrypt(PKCS#1 7.2.1 3.b) */
- mpz_powm(c, m, &key->e, &key->n);
-
- /* convert integer back to a chunk (PKCS#1 7.2.1 3.c) */
- out = mpz_to_n(c, key->k);
- mpz_clear(c);
- mpz_clear(m);
-
- DBG(DBG_RAW,
- DBG_dump_chunk("rsa encrypted data:\n", out)
- )
- return out;
- }
-}
-
-/*
- * decrypt data with an RSA private key and remove padding
- */
-bool
-RSA_decrypt(const RSA_private_key_t *key, chunk_t in, chunk_t *out)
-{
- chunk_t padded;
- u_char *pos;
- mpz_t t1, t2;
-
- n_to_mpz(t1, in.ptr,in.len);
-
- /* PKCS#1 v1.5 8.3 RSA computation y = x^c mod n
- * Better described in PKCS#1 v2.0 5.1 RSADP.
- * There are two methods, depending on the form of the private key.
- * We use the one based on the Chinese Remainder Theorem.
- */
- mpz_init(t2);
-
- mpz_powm(t2, t1, &key->dP, &key->p); /* m1 = c^dP mod p */
- mpz_powm(t1, t1, &key->dQ, &key->q); /* m2 = c^dQ mod Q */
-
- mpz_sub(t2, t2, t1); /* h = qInv (m1 - m2) mod p */
- mpz_mod(t2, t2, &key->p);
- mpz_mul(t2, t2, &key->qInv);
- mpz_mod(t2, t2, &key->p);
-
- mpz_mul(t2, t2, &key->q); /* m = m2 + h q */
- mpz_add(t1, t1, t2);
-
- padded = mpz_to_n(t1, key->pub.k);
- mpz_clear(t1);
- mpz_clear(t2);
-
- DBG(DBG_PRIVATE,
- DBG_dump_chunk("rsa decrypted data with padding:\n", padded)
- )
- pos = padded.ptr;
-
- /* PKCS#1 v1.5 8.1 encryption-block formatting (EB = 00 || 02 || PS || 00 || D) */
-
- /* check for hex pattern 00 02 in decrypted message */
- if ((*pos++ != 0x00) || (*(pos++) != 0x02))
- {
- plog("incorrect padding - probably wrong RSA key");
- freeanychunk(padded);
- return FALSE;
- }
- padded.len -= 2;
-
- /* the plaintext data starts after first 0x00 byte */
- while (padded.len-- > 0 && *pos++ != 0x00)
-
- if (padded.len == 0)
- {
- plog("no plaintext data");
- freeanychunk(padded);
- return FALSE;
- }
-
- clonetochunk(*out, pos, padded.len, "decrypted data");
- freeanychunk(padded);
- return TRUE;
-}
-
-/*
- * build signatureValue
- */
-chunk_t
-pkcs1_build_signature(chunk_t tbs, int hash_alg, const RSA_private_key_t *key
-, bool bit_string)
-{
-
- size_t siglen = key->pub.k;
-
- u_char digest_buf[MAX_DIGEST_LEN];
- chunk_t digest = { digest_buf, MAX_DIGEST_LEN };
- chunk_t digestInfo, alg_id, signatureValue;
- u_char *pos;
-
- switch (hash_alg)
- {
- case OID_MD5:
- case OID_MD5_WITH_RSA:
- alg_id = ASN1_md5_id;
- break;
- case OID_SHA1:
- case OID_SHA1_WITH_RSA:
- alg_id = ASN1_sha1_id;
- break;
- default:
- return empty_chunk;
- }
- compute_digest(tbs, hash_alg, &digest);
-
- /* according to PKCS#1 v2.1 digest must be packaged into
- * an ASN.1 structure for encryption
- */
- digestInfo = asn1_wrap(ASN1_SEQUENCE, "cm"
- , alg_id
- , asn1_simple_object(ASN1_OCTET_STRING, digest));
-
- /* generate the RSA signature */
- if (bit_string)
- {
- pos = build_asn1_object(&signatureValue, ASN1_BIT_STRING, 1 + siglen);
- *pos++ = 0x00;
- }
- else
- {
- pos = build_asn1_object(&signatureValue, ASN1_OCTET_STRING, siglen);
- }
- sign_hash(key, digestInfo.ptr, digestInfo.len, pos, siglen);
- pfree(digestInfo.ptr);
-
- return signatureValue;
-}
-
-/*
- * build a DER-encoded PKCS#1 private key object
- */
-chunk_t
-pkcs1_build_private_key(const RSA_private_key_t *key)
-{
- chunk_t pkcs1 = asn1_wrap(ASN1_SEQUENCE, "cmmmmmmmm"
- , ASN1_INTEGER_0
- , asn1_integer_from_mpz(&key->pub.n)
- , asn1_integer_from_mpz(&key->pub.e)
- , asn1_integer_from_mpz(&key->d)
- , asn1_integer_from_mpz(&key->p)
- , asn1_integer_from_mpz(&key->q)
- , asn1_integer_from_mpz(&key->dP)
- , asn1_integer_from_mpz(&key->dQ)
- , asn1_integer_from_mpz(&key->qInv));
-
- DBG(DBG_PRIVATE,
- DBG_dump_chunk("PKCS#1 encoded private key:", pkcs1)
- )
- return pkcs1;
-}
-
-/*
- * build a DER-encoded PKCS#1 public key object
- */
-chunk_t
-pkcs1_build_public_key(const RSA_public_key_t *rsa)
-{
- return asn1_wrap(ASN1_SEQUENCE, "mm"
- , asn1_integer_from_mpz(&rsa->n)
- , asn1_integer_from_mpz(&rsa->e));
-}
-
-/*
- * build a DER-encoded publicKeyInfo object
- */
-chunk_t
-pkcs1_build_publicKeyInfo(const RSA_public_key_t *rsa)
-{
- chunk_t publicKey;
- chunk_t rawKey = pkcs1_build_public_key(rsa);
-
- u_char *pos = build_asn1_object(&publicKey, ASN1_BIT_STRING
- , 1 + rawKey.len);
- *pos++ = 0x00;
- mv_chunk(&pos, rawKey);
-
- return asn1_wrap(ASN1_SEQUENCE, "cm"
- , ASN1_rsaEncryption_id
- , publicKey);
-}
-void
-free_RSA_public_content(RSA_public_key_t *rsa)
-{
- mpz_clear(&rsa->n);
- mpz_clear(&rsa->e);
-}
-
-void
-free_RSA_private_content(RSA_private_key_t *rsak)
-{
- free_RSA_public_content(&rsak->pub);
- mpz_clear(&rsak->d);
- mpz_clear(&rsak->p);
- mpz_clear(&rsak->q);
- mpz_clear(&rsak->dP);
- mpz_clear(&rsak->dQ);
- mpz_clear(&rsak->qInv);
-}
-