diff options
Diffstat (limited to 'doc/src/draft-richardson-ipsec-opportunistic.xml')
-rw-r--r-- | doc/src/draft-richardson-ipsec-opportunistic.xml | 2519 |
1 files changed, 2519 insertions, 0 deletions
diff --git a/doc/src/draft-richardson-ipsec-opportunistic.xml b/doc/src/draft-richardson-ipsec-opportunistic.xml new file mode 100644 index 000000000..d587df693 --- /dev/null +++ b/doc/src/draft-richardson-ipsec-opportunistic.xml @@ -0,0 +1,2519 @@ +<?xml version="1.0"?> +<!DOCTYPE rfc SYSTEM "rfc2629.dtd"> +<?rfc toc="yes"?> +<?rfc tocdepth='2' ?> + +<rfc ipr="full2026" docName="draft-richardson-ipsec-opportunistic-12.txt"> + +<front> + <area>Security</area> + <workgroup>Independent submission</workgroup> + <title abbrev="opportunistic"> + Opportunistic Encryption using The Internet Key Exchange (IKE) + </title> + + <author initials="M." surname="Richardson" fullname="Michael C. Richardson"> + <organization abbrev="SSW">Sandelman Software Works</organization> + <address> + <postal> + <street>470 Dawson Avenue</street> + <city>Ottawa</city> + <region>ON</region> + <code>K1Z 5V7</code> + <country>CA</country> + </postal> + <email>mcr@sandelman.ottawa.on.ca</email> + <uri>http://www.sandelman.ottawa.on.ca/</uri> + </address> + </author> + + <author initials="D.H." surname="Redelmeier" + fullname="D. Hugh Redelmeier"> + <organization abbrev="Mimosa">Mimosa</organization> + <address> + <postal> + <city>Toronto</city> + <region>ON</region> + <country>CA</country> + </postal> + <email>hugh@mimosa.com</email> + </address> + </author> + + <date month="June" year="2003"></date> + +<abstract> + <t> +This document describes opportunistic encryption (OE) using the Internet Key +Exchange (IKE) and IPsec. +Each system administrator adds new +resource records to his or her Domain Name System (DNS) to support +opportunistic encryption. The objective is to allow encryption for secure communication without +any pre-arrangement specific to the pair of systems involved. + </t> + <t> +DNS is used to distribute the public keys of each +system involved. This is resistant to passive attacks. The use of DNS +Security (DNSSEC) secures this system against active attackers as well. + </t> + <t> +As a result, the administrative overhead is reduced +from the square of the number of systems to a linear dependence, and it becomes +possible to make secure communication the default even +when the partner is not known in advance. + </t> + <t> +This document is offered up as an Informational RFC. + </t> +</abstract> + +</front> + +<middle> + +<section title="Introduction"> + +<section title="Motivation"> + +<t> +The objective of opportunistic encryption is to allow encryption without +any pre-arrangement specific to the pair of systems involved. Each +system administrator adds +public key information to DNS records to support opportunistic +encryption and then enables this feature in the nodes' IPsec stack. +Once this is done, any two such nodes can communicate securely. +</t> + +<t> +This document describes opportunistic encryption as designed and +implemented by the Linux FreeS/WAN project in revisions up and including 2.00. +Note that 2.01 and beyond implements RFC3445, in a backward compatible way. +For project information, see http://www.freeswan.org. +</t> + + <t> +The Internet Architecture Board (IAB) and Internet Engineering +Steering Group (IESG) have taken a strong stand that the Internet +should use powerful encryption to provide security and +privacy <xref target="RFC1984" />. +The Linux FreeS/WAN project attempts to provide a practical means to implement this policy. + </t> + + <t> +The project uses the IPsec, ISAKMP/IKE, DNS and DNSSEC +protocols because they are +standardized, widely available and can often be deployed very easily +without changing hardware or software or retraining users. + </t> + + <t> +The extensions to support opportunistic encryption are simple. No +changes to any on-the-wire formats are needed. The only changes are to +the policy decision making system. This means that opportunistic +encryption can be implemented with very minimal changes to an existing +IPsec implementation. + </t> + + <t> +Opportunistic encryption creates a "fax effect". The proliferation +of the fax machine was possible because it did not require that everyone +buy one overnight. Instead, as each person installed one, the value +of having one increased - as there were more people that could receive faxes. +Once opportunistic encryption is installed it +automatically recognizes +other boxes using opportunistic encryption, without any further configuration +by the network +administrator. So, as opportunistic encryption software is installed on more +boxes, its value +as a tool increases. +</t> + + <t> +This document describes the infrastructure to permit deployment of +Opportunistic Encryption. +</t> + + <t> +The term S/WAN is a trademark of RSA Data Systems, and is used with permission +by this project. + </t> + +</section> + +<section title="Types of network traffic"> + <t> + To aid in understanding the relationship between security processing and IPsec + we divide network traffic into four categories: + <list style="hanging"> + <t hangText="* Deny:"> networks to which traffic is always forbidden.</t> + <t hangText="* Permit:"> networks to which traffic in the clear is permitted.</t> + <t hangText="* Opportunistic tunnel:"> networks to which traffic is encrypted if possible, but otherwise is in the clear + or fails depending on the default policy in place. + </t> + <t hangText="* Configured tunnel:"> networks to which traffic +must be encrypted, and traffic in the clear is never permitted. +A Virtual Private Network (VPN) is a form of configured tunnel. +</t> + </list> + </t> + +<t> +Traditional firewall devices handle the first two categories. +No authentication is required. +The permit policy is currently the default on the Internet. +</t> + +<t> +This document describes the third category - opportunistic tunnel, which is +proposed as the new default for the Internet. +</t> + +<t> + Category four, encrypt traffic or drop it, requires authentication of the + end points. As the number of end points is typically bounded and is typically + under a single authority, arranging for distribution of + authentication material, while difficult, does not require any new + technology. The mechanism described here provides an additional way to + distribute the authentication materials, that of a public key method that does not + require deployment of an X.509 based infrastructure. +</t> +<t> +Current Virtual Private Networks can often be replaced by an "OE paranoid" +policy as described herein. +</t> +</section> + +<section title="Peer authentication in opportunistic encryption"> + + <t> + Opportunistic encryption creates tunnels between nodes that + are essentially strangers. This is done without any prior bilateral + arrangement. + There is, therefore, the difficult question of how one knows to whom one is + talking. + </t> + + <t> + One possible answer is that since no useful + authentication can be done, none should be tried. This mode of operation is + named "anonymous encryption". An active man-in-the-middle attack can be + used to thwart the privacy of this type of communication. + Without peer authentication, there is no way to prevent this kind of attack. + </t> + + <t> +Although a useful mode, anonymous encryption is not the goal of this +project. Simpler methods are available that can achieve anonymous +encryption only, but authentication of the peer is a desireable goal. +The latter is achieved through key distribution in DNS, leveraging upon +the authentication of the DNS in DNSSEC. +</t> + + <t> + Peers are, therefore, authenticated with DNSSEC when available. Local policy +determines how much trust to extend when DNSSEC is not available. + </t> + + <t> + However, an essential premise of building private connections with + strangers is that datagrams received through opportunistic tunnels + are no more special than datagrams that arrive in the clear. + Unlike in a VPN, these datagrams should not be given any special + exceptions when it comes to auditing, further authentication or + firewalling. + </t> + + <t> + When initiating outbound opportunistic encryption, local + configuration determines what happens if tunnel setup fails. It may be that + the packet goes out in the clear, or it may be dropped. + </t> + + </section> + +<section title="Use of RFC2119 terms"> +<t> + The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, + SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this + document, are to be interpreted as described in <xref target="RFC2119" /> +</t> +</section> + +</section> + +<section title="Overview"> + + <section title="Reference diagram"> + + <figure anchor="networkdiagram" title="Reference Network Diagram"> + <preamble>The following network diagram is used in the rest of + this document as the canonical diagram:</preamble> + <artwork> + [Q] [R] + . . AS2 + [A]----+----[SG-A].......+....+.......[SG-B]-------[B] + | ...... + AS1 | ..PI.. + | ...... + [D]----+----[SG-D].......+....+.......[C] AS3 + + + </artwork> + <postamble></postamble> + + </figure> + + <t> + In this diagram, there are four end-nodes: A, B, C and D. + There are three security gateways, SG-A, SG-B, SG-D. A, D, SG-A and + SG-D are part + of the same administrative authority, AS1. SG-A and SG-D are on two + different exit + paths from organization 1. SG-B/B is an independent organization, AS2. + Nodes Q and R are nodes on the Internet. PI is the Public + Internet ("The Wild"). + </t> + + </section> + + <section title="Terminology"> + + <t> + The following terminology is used in this document: + </t> + + <list style="hanging"> + <t hangText="Security gateway (or simply gateway):"> a system that performs IPsec tunnel + mode encapsulation/decapsulation. [SG-x] in the diagram.</t> + <t hangText="Alice:"> node [A] in the diagram. When an IP address is needed, this is 192.1.0.65.</t> + <t hangText="Bob:"> node [B] in the diagram. When an IP address is needed, this is 192.2.0.66.</t> + <t hangText="Carol:"> node [C] in the diagram. When an IP address is needed, this is 192.1.1.67.</t> + <t hangText="Dave:"> node [D] in the diagram. When an IP address is needed, this is 192.3.0.68.</t> + <t hangText="SG-A:"> Alice's security gateway. Internally it is 192.1.0.1, externally it is 192.1.1.4.</t> + <t hangText="SG-B:"> Bob's security gateway. Internally it is 192.2.0.1, externally it is 192.1.1.5.</t> + <t hangText="SG-D:"> Dave's security gateway. Also Alice's backup security gateway. Internally it is 192.3.0.1, externally it is 192.1.1.6.</t> + <t hangText="."> A period represents an untrusted network of unknown + type.</t> + <t hangText="Configured tunnel:"> a tunnel that + is directly and deliberately hand configured on participating gateways. + Configured tunnels are typically given a higher level of + trust than opportunistic tunnels.</t> + + <t hangText="Road warrior tunnel:"> a configured tunnel connecting one + node with a fixed IP address and one node with a variable IP address. + A road warrior (RW) connection must be initiated by the + variable node, since the fixed node cannot know the + current address for the road warrior. </t> + + <t hangText="Anonymous encryption:"> + the process of encrypting a session without any knowledge of who the + other parties are. No authentication of identities is done.</t> + + <t hangText="Opportunistic encryption:"> + the process of encrypting a session with authenticated knowledge of + who the other party is.</t> + + <t hangText="Lifetime:"> + the period in seconds (bytes or datagrams) for which a security + association will remain alive before needing to be re-keyed.</t> + + <t hangText="Lifespan:"> + the effective time for which a security association remains useful. A + security association with a lifespan shorter than its lifetime would + be removed when no longer needed. A security association with a + lifespan longer than its lifetime would need to be re-keyed one or + more times.</t> + + <t hangText="Phase 1 SA:"> an ISAKMP/IKE security association sometimes + referred to as a keying channel.</t> + + <t hangText="Phase 2 SA:"> an IPsec security association.</t> + + <t hangText="Tunnel:"> another term for a set of phase 2 SA (one in each direction).</t> + + <t hangText="NAT:"> Network Address Translation + (see <xref target="RFC2663" />).</t> + + <t hangText="NAPT:"> Network Address and Port Translation + (see <xref target="RFC2663" />).</t> + + <t hangText="AS:"> an autonomous system </t> + + <t hangText="FQDN:"> Fully-Qualified Domain Name </t> + + <t hangText="Default-free zone:"> + a set of routers that maintain a complete set of routes to + all currently reachable destinations. Having such a list, these routers + never make use of a default route. A datagram with a destination address + not matching any route will be dropped by such a router. + </t> + + </list> + </section> + +<section title="Model of operation"> + +<t> +The opportunistic encryption security gateway (OE gateway) is a regular +gateway node as described in <xref target="RFC0791" /> section 2.4 and +<xref target="RFC1009" /> with the additional capabilities described here and +in <xref target="RFC2401" />. +The algorithm described here provides a way to determine, for each datagram, +whether or not to encrypt and tunnel the datagram. Two important things +that must be determined are whether or not to encrypt and tunnel and, if +so, the destination address or name of the tunnel end point which should be used. +</t> + +<section title="Tunnel authorization"> +<t> +The OE gateway determines whether or not to create a tunnel based on +the destination address of each packet. Upon receiving a packet with a destination +address not recently seen, the OE gateway performs a lookup in DNS for an +authorization resource record (see <xref target="TXT"/>). The record is located using +the IP address to perform a search in the in-addr.arpa (IPv4) or ip6.arpa +(IPv6) maps. If an authorization record is found, the OE gateway +interprets this as a request for a tunnel to be formed. +</t> +</section> + +<section title="Tunnel end-point discovery"> + +<t> +The authorization resource record also provides the address or name of the tunnel +end point which should be used. +</t> +<t> +The record may also provide the public RSA key of the tunnel end point +itself. This is provided for efficiency only. If the public RSA key is not +present, the OE gateway performs a second lookup to find a KEY +resource record for the end point address or name. +</t> +<t> +Origin and integrity protection of the resource records is provided by +DNSSEC (<xref target="RFC2535"/>). <xref target="nodnssec"/> +documents an optional restriction on the tunnel end point if DNSSEC signatures +are not available for the relevant records. +</t> + +</section> + +<section title="Caching of authorization results"> +<t> +The OE gateway maintains a cache, in the forwarding plane, of +source/destination pairs for which opportunistic encryption has been +attempted. This cache maintains a record of whether or not OE was +successful so that subsequent datagrams can be forwarded properly +without additional delay. +</t> + +<t> +Successful negotiation of OE instantiates a new security association. +Failure to negotiate OE results in creation of a +forwarding policy entry either to drop or transmit in the clear future +datagrams. This negative cache is necessary to avoid the possibly lengthy process of repeatedly looking +up the same information. +</t> + +<t> +The cache is timed out periodically, as described in <xref target="teardown" />. +This removes entries that are no longer +being used and permits the discovery of changes in authorization policy. +</t> +</section> + +</section> <!-- "Model of operation" --> + +</section> <!-- "Overview" --> + +<section title="Protocol Specification"> + +<t> +The OE gateway is modeled to have a forwarding plane and a control +plane. A control channel, such as PF_KEY, connects the two planes. +(See <xref target="RFC2367" />.) +The forwarding plane performs per datagram operations. The control plane +contains a keying daemon, such as ISAKMP/IKE, and performs all +authorization, peer authentication and key derivation functions. +</t> + +<section title="Forwarding plane state machine"> + +<t> +Let the OE gateway maintain a collection of objects -- a superset of the +security policy database (SPD) specified in <xref target="RFC2401" />. For +each combination of source and destination address, an SPD +object exists in one of five following states. +Prior to forwarding each datagram, the responder uses the source and +destination addresses to pick an entry from the SPD. +The SPD then determines if and how the packet is forwarded. +</t> + +<!-- from file forwardingstate.txt --> +<artwork><![CDATA[ + .--------------. + | non-existant | + | policy | + `--------------' + | + | PF_ACQUIRE + | + |<---------. + V | new packet + .--------------. | (maybe resend PF_ACQUIRE) + | hold policy |--' + | |--. + `--------------' \ pass + | | \ msg .---------. + | | \ V | forward + | | .-------------. | packet + create | | | pass policy |--' + IPsec | | `-------------' + SA | | + | \ + | \ + V \ deny + .---------. \ msg + | encrypt | \ + | policy | \ ,---------. + `---------' \ | | discard + \ V | packet + .-------------. | + | deny policy |--' + '-------------' +]]></artwork> + + +<section title="Non-existent policy"> +<t> +If the gateway does not find an entry, then this policy applies. +The gateway creates an entry with an initial state of "hold policy" and requests +keying material from the keying daemon. The gateway does not forward the datagram, +rather it SHOULD attach the datagram to the SPD entry as the "first" datagram and retain it +for eventual transmission in a new state. + +</t> +</section> + +<section title="Hold policy"> +<t> +The gateway requests keying material. If the interface to the keying +system is lossy (PF_KEY, for instance, can be), the implementation +SHOULD include a mechanism to retransmit the +keying request at a rate limited to less than 1 request per second. +The gateway does not forward the datagram. The gateway SHOULD attach the +datagram to the SPD entry as the "last" datagram where it is retained +for eventual transmission. +If there is a datagram already so stored, then that already stored datagram is discarded. +</t> +<t> +The rational behind saving the the "first" and "last" datagrams are as follows: +The "first" datagram is probably a TCP SYN packet. Once there is keying +established, the gateway will release this datagram, avoiding the need to +for the end-point to retransmit the datagram. In the case where the connection +was not a TCP connection, buyt was instead a streaming protocol or a DNS request, +the "last" datagram that was retained is likely the most recent data. The difference +between "first" and "last" may also help the end-points determine +which data awas dropped while negotiation took place. +</t> +</section> + +<section title="Pass-through policy"> +<t> +The gateway forwards the datagram using the normal forwarding table. +The gateway enters this state only by command from the keying daemon, +and upon entering this state, also forwards the "first" and "last" datagrams. +</t> +</section> + +<section title="Deny policy"> +<t> +The gateway discards the datagram. The gateway enters this state only by +command +from the keying daemon, and upon entering this state, discards the "first" +and "last" datagrams. +An implementation MAY provide the administator with a control to determine +if further datagrams cause ICMP messages +to be generated (i.e. ICMP Destination Unreachable, Communication +Administratively Prohibited. type=3, code=13). +</t> +</section> + +<section title="Encrypt policy"> +<t> +The gateway encrypts the datagram using the indicated security association database +(SAD) entry. The gateway enters this state only by command from the keying daemon, and upon entering +this state, releases and forwards the "first" and "last" datagrams using the +new encrypt policy. +</t> +<t> +If the associated SAD entry expires because of byte, packet or time limits, then +the entry returns to the Hold policy, and an expire message is sent to the keying daemon. +</t> +</section> + +<t> +All states may be created directly by the keying daemon while acting as a +gateway. +</t> + +</section> <!-- "Datagram state machine" --> + + +<section anchor="initclasses" title="Keying Daemon -- initiator"> +<t> +Let the keying daemon maintain a collection of objects. Let them be +called "connections" or "conn"s. There are two categories of +connection objects: classes and instances. A class represents an +abstract policy - what could be. An instance represents an actual connection - +what is implemented at the time. +</t> + +<t> +Let there be two further subtypes of connections: keying channels (Phase +1 SAs) and data channels (Phase 2 SAs). Each data channel object may have +a corresponding SPD and SAD entry maintained by the datagram state machine. +</t> + +<t> +For the purposes of opportunistic encryption, there MUST, at least, be +connection classes known as "deny", "always-clear-text", "OE-permissive", and +"OE-paranoid". +The latter two connection classes define a set of source and/or destination +addresses for which opportunistic encryption will be attempted. +The administrator MAY set policy options in a number of additional places. +An implementation MAY create additional connection classes to further refine +these policies. +</t> + +<t> +The simplest system may need only the "OE-permissive" connection, and would +list its own (single) IP address as the source address of this policy and +the wild-card address 0.0.0.0/0 as the destination IPv4 address. That is, the +simplest policy is to try opportunistic encryption with all destinations. +</t> + +<t> +The distinction between permissive and paranoid OE use will become clear +in the state transition differences. In general a permissive OE will, on +failure, install a pass-through policy, while a paranoid OE will, on failure, +install a drop policy. +</t> + +<t> +In this description of the keying machine's state transitions, the states +associated with the keying system itself are omitted because they are best documented in the keying system +(<xref target="RFC2407" />, +<xref target="RFC2408" /> and <xref target="RFC2409" /> for ISAKMP/IKE), +and the details are keying system specific. Opportunistic encryption is not +dependent upon any specific keying protocol, but this document does provide +requirements for those using ISAKMP/IKE to assure that implementations inter-operate. +</t> +<t> +The state transitions that may be involved in communicating with the +forwarding plane are omitted. PF_KEY and similar protocols have their own +set of states required for message sends and completion notifications. +</t> +<t> +Finally, the retransmits and recursive lookups that are normal for DNS are +not included in this description of the state machine. +</t> + +<!-- from file initiatorstate.txt --> +<artwork><![CDATA[ + + | + | PF_ACQUIRE + | + V + .---------------. + | non-existant | + | connection | + `---------------' + | | | + send , | \ +expired pass / | \ send +conn. msg / | \ deny + ^ / | \ msg + | V | do \ +.---------------. | DNS \ .---------------. +| clear-text | | lookup `->| deny |---> expired +| connection | | for | connection | connection +`---------------' | destination `---------------' + ^ ^ | ^ + | | no record | | + | | OE-permissive V | no record + | | .---------------. | OE-paranoid + | `------------| potential OE |---------' + | | connection | ^ + | `---------------' | + | | | + | | got TXT record | DNSSEC failure + | | reply | + | V | wrong + | .---------------. | failure + | | authenticate |---------' + | | & parse TXT RR| ^ + | repeated `---------------' | + | ICMP | | + | failures | initiate IKE to | + | (short-timeout) | responder | + | V | + | phase-2 .---------------. | failure + | failure | pending |---------' + | (normal | OE | ^ + | timeout) | |invalid | phase-2 failure (short-timeout) + | | |<--.SPI | ICMP failures (normal timeout) + | | | | | + | | +=======+ |---' | + | | | IKE | | ^ | + `--------------| | states|---------------' + | +=======+ | | + `---------------' | + | IPsec SA | invalid SPI + | established | + V | rekey time + .--------------. | + | keyed |<---|-------------------------------. + | connection |----' | + `--------------' | + | timer | + | | + V | + .--------------. connection still active | + clear-text----->| expired |------------------------------------' + deny----->| connection | + `--------------' + | dead connected - deleted + V +]]></artwork> + + +<section title="Nonexistent connection"> +<t> +There is no connection instance for a given source/destination address pair. +Upon receipt of a request for keying material for this +source/destination pair, the initiator searches through the connection classes to +determine the most appropriate policy. Upon determining an appropriate +connection class, an instance object is created of that type. +Both of the OE types result in a potential OE connection. +</t> +<t>Failure to find an appropriate connection class results in an +administrator defined default. +</t> +<t> +In each case, when the initiator finds an appropriate class for the new flow, +an instance connection is made of the class which matched. +</t> +</section> + +<section title="Clear-text connection"> +<t> +The non-existent connection makes a transition to this state when an +always-clear-text class is instantiated, or when an OE-permissive +connection fails. During the transition, the initiator creates a pass-through +policy object in the forwarding plane for the appropriate flow. +</t> +<t> +Timing out is the only way to leave this state +(see <xref target="expiring" />). +</t> +</section> + +<section title="Deny connection"> +<t> +The empty connection makes a transition to this state when a +deny class is instantiated, or when an OE-paranoid connection fails. +During the transition, the initiator creates a deny policy object in the forwarding plane +for the appropriate flow. +</t> +<t> +Timing out is the only way to leave this state +(see <xref target="expiring" />). +</t> +</section> + +<section title="Potential OE connection"> +<t> +The empty connection makes a transition to this state when one of either OE class is instantiated. +During the transition to this state, the initiator creates a hold policy object in the +forwarding plane for the appropriate flow. +</t> +<t> +In addition, when making a transition into this state, DNS lookup is done in +the reverse-map for a TXT delegation resource record (see <xref target="TXT" />). +The lookup key is the destination address of the flow. +</t> +<t> +There are three ways to exit this state: +<list style="numbers"> +<t>DNS lookup finds a TXT delegation resource record.</t> +<t>DNS lookup does not find a TXT delegation resource record.</t> +<t>DNS lookup times out.</t> +</list> +</t> + +<t> +Based upon the results of the DNS lookup, the potential OE connection makes a +transition to the pending OE connection state. The conditions for a +successful DNS look are: +<list style="numbers"> +<t>DNS finds an appropriate resource record</t> +<t>It is properly formatted according to <xref target="TXT" /></t> +<t> if DNSSEC is enabled, then the signature has been vouched for.</t> +</list> + +Note that if the initiator does not find the public key +present in the TXT delegation record, then the public key must +be looked up as a sub-state. Only successful completion of all the +DNS lookups is considered a success. +</t> +<t> +If DNS lookup does not find a resource record or DNS times out, then the +initiator considers the receiver not OE capable. If this is an OE-paranoid instance, +then the potential OE connection makes a transition to the deny connection state. +If this is an OE-permissive instance, then the potential OE connection makes a transition to the +clear-text connection state. +</t> +<t> +If the initiator finds a resource record but it is not properly formatted, or +if DNSSEC is +enabled and reports a failure to authenticate, then the potential OE +connection makes a +transition to the deny connection state. This action SHOULD be logged. If the +administrator wishes to override this transition between states, then an +always-clear class can be installed for this flow. An implementation MAY make +this situation a new class. +</t> + +<section anchor="nodnssec" title="Restriction on unauthenticated TXT delegation records"> +<t> +An implementation SHOULD also provide an additional administrative control +on delegation records and DNSSEC. This control would apply to delegation +records (the TXT records in the reverse-map) that are not protected by +DNSSEC. +Records of this type are only permitted to delegate to their own address as +a gateway. When this option is enabled, an active attack on DNS will be +unable to redirect packets to other than the original destination. +<!-- This was asked for by Bill Sommerfeld --> +</t> +</section> +</section> + +<section title="Pending OE connection"> +<t> +The potential OE connection makes a transition to this state when +the initiator determines that all the information required from the DNS lookup is present. +Upon entering this state, the initiator attempts to initiate keying to the gateway +provided. +</t> +<t> +Exit from this state occurs either with a successfully created IPsec SA, or +with a failure of some kind. Successful SA creation results in a transition +to the key connection state. +</t> +<t> +Three failures have caused significant problems. They are clearly not the +only possible failures from keying. +</t> +<t> +Note that if there are multiple gateways available in the TXT delegation +records, then a failure can only be declared after all have been +tried. Further, creation of a phase 1 SA does not constitute success. A set +of phase 2 SAs (a tunnel) is considered success. +</t> +<t> +The first failure occurs when an ICMP port unreachable is consistently received +without any other communication, or when there is silence from the remote +end. This usually means that either the gateway is not alive, or the +keying daemon is not functional. For an OE-permissive connection, the initiator makes a transition +to the clear-text connection but with a low lifespan. For an OE-pessimistic connection, +the initiator makes a transition to the deny connection again with a low lifespan. The +lifespan in both +cases is kept low because the remote gateway may +be in the process of rebooting or be otherwise temporarily unavailable. +</t> +<t> +The length of time to wait for the remote keying daemon to wake up is +a matter of some debate. If there is a routing failure, 5 minutes is usually long +enough for the network to +re-converge. Many systems can reboot in that amount of +time as well. However, 5 minutes is far too long for most users to wait to +hear that they can not connect using OE. Implementations SHOULD make this a +tunable parameter. +</t> +<t> +The second failure occurs after a phase 1 SA has been created, but there is +either no response to the phase 2 proposal, or the initiator receives a +negative notify (the notify must be +authenticated). The remote gateway is not prepared to do OE at this time. +As before, the initiator makes a transition to the clear-text or the deny +connection based upon connection class, but this +time with a normal lifespan. +</t> +<t> +The third failure occurs when there is signature failure while authenticating +the remote gateway. This can occur when there has been a +key roll-over, but DNS has not caught up. In this case again, the initiator makes a +transition to the clear-text or the deny connection based +upon the connection class. However, the lifespan depends upon the remaining +time to live in the DNS. (Note that DNSSEC signed resource records have a different +expiry time than non-signed records.) +<!-- dig @gateway would also work here --> +</t> + +</section> + +<section anchor="keyed" title="Keyed connection"> +<t> +The pending OE connection makes a transition to this state when +session keying material (the phase 2 SAs) is derived. The initiator creates an encrypt +policy in the forwarding plane for this flow. +</t> +<t> +There are three ways to exit this state. The first is by receipt of an +authenticated delete message (via the keying channel) from the peer. This is +normal teardown and results in a transition to the expired connection state. +</t> +<t> +The second exit is by expiry of the forwarding plane keying material. This +starts a re-key operation with a transition back to pending OE +connection. In general, the soft expiry occurs with sufficient time left +to continue to use the keys. A re-key can fail, which may +result in the connection failing to clear-text or deny as +appropriate. In the event of a failure, the forwarding plane +policy does not change until the phase 2 SA (IPsec SA) reaches its +hard expiry. +</t> +<t> +The third exit is in response to a negotiation from a remote +gateway. If the forwarding plane signals the control plane that it has received an +unknown SPI from the remote gateway, or an ICMP is received from the remote gateway +indicating an unknown SPI, the initiator should consider that +the remote gateway has rebooted or restarted. Since these +indications are easily forged, the implementation must +exercise care. The initiator should make a cautious +(rate-limited) attempt to re-key the connection. +</t> +</section> + +<section anchor="expiring" title="Expiring connection"> +<t> +The initiator will periodically place each of the deny, clear-text, and keyed +connections into this +sub-state. See <xref target="teardown" /> for more details of how often this +occurs. +The initiator queries the forwarding plane for last use time of the +appropriate +policy. If the last use time is relatively recent, then the connection +returns to the +previous deny, clear-text or keyed connection state. If not, then the +connection enters +the expired connection state. +</t> +<t> +The DNS query and answer that lead to the expiring connection state are also +examined. The DNS query may become stale. (A negative, i.e. no such record, answer +is valid for the period of time given by the MINIMUM field in an attached SOA +record. See <xref target="RFC1034" /> section 4.3.4.) +If the DNS query is stale, then a new query is made. If the results change, then the connection +makes a transition to a new state as described in potential OE connection state. +</t> +<t> +Note that when considering how stale a connection is, both outgoing SPD and +incoming SAD must be queried as some flows may be unidirectional for some time. +</t> +<t> +Also note that the policy at the forwarding plane is not updated unless there +is a conclusion that there should be a change. +</t> + +</section> +<section title="Expired connection"> +<t> +Entry to this state occurs when no datagrams have been forwarded recently via the +appropriate SPD and SAD objects. The objects in the forwarding plane are +removed (logging any final byte and packet counts if appropriate) and the +connection instance in the keying plane is deleted. +</t> +<t> +The initiator sends an ISAKMP/IKE delete to clean up the phase 2 SAs as described in +<xref target="teardown" />. +</t> +<t> +Whether or not to delete the phase 1 SAs +at this time is left as a local implementation issue. Implementations +that do delete the phase 1 SAs MUST send authenticated delete messages to +indicate that they are doing so. There is an advantage to keeping +the phase 1 SAs until they expire - they may prove useful again in the +near future. +</t> +</section> + +</section> <!-- "Keying state machine - initiator" --> + +<section title="Keying Daemon - responder"> +<t> +The responder has a set of objects identical to those of the initiator. +</t> +<t> +The responder receives an invitation to create a keying channel from an initiator. +</t> + +<!-- from file responderstate.txt --> +<artwork><![CDATA[ + | + | IKE main mode + | phase 1 + V + .-----------------. + | unauthenticated | + | OE peer | + `-----------------' + | + | lookup KEY RR in in-addr.arpa + | (if ID_IPV4_ADDR) + | lookup KEY RR in forward + | (if ID_FQDN) + V + .-----------------. RR not found + | received DNS |---------------> log failure + | reply | + `----+--------+---' + phase 2 | \ misformatted + proposal | `------------------> log failure + V + .----------------. + | authenticated | identical initiator + | OE peer |--------------------> initiator + `----------------' connection found state machine + | + | look for TXT record for initiator + | + V + .---------------. + | authorized |---------------------> log failure + | OE peer | + `---------------' + | + | + V + potential OE + connection in + initiator state + machine + + +$Id: draft-richardson-ipsec-opportunistic.xml,v 1.1 2004/03/15 20:35:24 as Exp $ +]]></artwork> + + +<section title="Unauthenticated OE peer"> +<t> +Upon entering this state, the responder starts a DNS lookup for a KEY record for the +initiator. +The responder looks in the reverse-map for a KEY record for the initiator if the +initiator has offered an ID_IPV4_ADDR, and in the forward map if the +initiator has offered an ID_FQDN type. (See <xref target="RFC2407" /> section +4.6.2.1.) +</t> +<t> +The responder exits this state upon successful receipt of a KEY from DNS, and use of the key +to verify the signature of the initiator. +</t> + +<!-- +<t> +The public key that is retrieved should be stored in stable storage for an +administratively defined period of time, (typically several months if +possible). If a key has previously been stored on disk, then the returned key +should be compared to what has been received, and the key considered valid +only if they match. +</t> +--> + +<t> +Successful authentication of the peer results in a transition to the +authenticated OE Peer state. +</t> +<t> +Note that the unauthenticated OE peer state generally occurs in the middle of the key negotiation +protocol. It is really a form of pseudo-state. +</t> +</section> + +<section title="Authenticated OE Peer"> +<t> +The peer will eventually propose one or more phase 2 SAs. The responder uses the source and +destination address in the proposal to +finish instantiating the connection state +using the connection class table. +The responder MUST search for an identical connection object at this point. +</t> +<t> +If an identical connection is found, then the responder deletes the old instance, +and the new object makes a transition to the pending OE connection state. This means +that new ISAKMP connections with a given peer will always use the latest +instance, which is the correct one if the peer has rebooted in the interim. +</t> +<t> +If an identical connection is not found, then the responder makes the transition according to the +rules given for the initiator. +</t> +<t> +Note that if the initiator is in OE-paranoid mode and the responder is in +either always-clear-text or deny, then no communication is possible according +to policy. An implementation is permitted to create new types of policies +such as "accept OE but do not initiate it". This is a local matter. + </t> +</section> + +</section> <!-- "Keying state machine - responder" --> + +<section anchor="teardown" title="Renewal and teardown"> + <section title="Aging"> +<t> +A potentially unlimited number of tunnels may exist. In practice, only a few +tunnels are used during a period of time. Unused tunnels MUST, therefore, be +torn down. Detecting when tunnels are no longer in use is the subject of this section. +</t> + +<t> +There are two methods for removing tunnels: explicit deletion or expiry. +</t> + +<t> +Explicit deletion requires an IKE delete message. As the deletes +MUST be authenticated, both ends of the tunnel must maintain the +key channel (phase 1 ISAKMP SA). An implementation which refuses to either maintain or +recreate the keying channel SA will be unable to use this method. +</t> + +<t> +The tunnel expiry method simply allows the IKE daemon to +expire normally without attempting to re-key it. +</t> + +<t> +Regardless of which method is used to remove tunnels, the implementation MUST +a method to determine if the tunnel is still in use. The specifics are a +local matter, but the FreeS/WAN project uses the following criteria. These +criteria are currently implemented in the key management daemon, but could +also be implemented at the SPD layer using an idle timer. +</t> + +<t> +Set a short initial (soft) lifespan of 1 minute since many net flows last +only a few seconds. +</t> + +<t> +At the end of the lifespan, check to see if the tunnel was used by +traffic in either direction during the last 30 seconds. If so, assign a +longer tentative lifespan of 20 minutes after which, look again. If the +tunnel is not in use, then close the tunnel. +</t> + +<t> +The expiring state in the key management +system (see <xref target="expiring" />) implements these timeouts. +The timer above may be in the forwarding plane, +but then it must be re-settable. +</t> + +<t> +The tentative lifespan is independent of re-keying; it is just the time when +the tunnel's future is next considered. +(The term lifespan is used here rather than lifetime for this reason.) +Unlike re-keying, this tunnel use check is not costly and should happen +reasonably frequently. +</t> + +<t> +A multi-step back-off algorithm is not considered worth the effort here. +</t> + +<t> +If the security gateway and the client host are the +same and not a Bump-in-the-Stack or Bump-in-the-Wire implementation, tunnel +teardown decisions MAY pay attention to TCP connection status as reported +by the local TCP layer. A still-open TCP connection is almost a guarantee that more traffic is +expected. Closing of the only TCP connection through a tunnel is a +strong hint that no more traffic is expected. +</t> + +</section> <!-- "Aging" --> + +<section title="Teardown and cleanup"> + +<t> +Teardown should always be coordinated between the two ends of the tunnel by +interpreting and sending delete notifications. There is a +detailed sub-state in the expired connection state of the key manager that +relates to retransmits of the delete notifications, but this is considered to +be a keying system detail. +</t> + +<t> +On receiving a delete for the outbound SAs of a tunnel (or some subset of +them), tear down the inbound ones also and notify the remote end with a +delete. If the local system receives a delete for a tunnel which is no longer in +existence, then two delete messages have crossed paths. Ignore the delete. +The operation has already been completed. Do not generate any messages in this +situation. +</t> +<t> +Tunnels are to be considered as bidirectional entities, even though the +low-level protocols don't treat them this way. +</t> + +<t> +When the deletion is initiated locally, rather than as a +response to a received delete, send a delete for (all) the +inbound SAs of a tunnel. If the local system does not receive a responding delete +for the outbound SAs, try re-sending the original +delete. Three tries spaced 10 seconds apart seems a reasonable +level of effort. A failure of the other end to respond after 3 attempts, +indicates that the possibility of further communication is unlikely. Remove the outgoing SAs. +(The remote system may be a mobile node that is no longer present or powered on.) +</t> + +<t> +After re-keying, transmission should switch to using the new +outgoing SAs (ISAKMP or IPsec) immediately, and the old leftover +outgoing SAs should be cleared out promptly (delete should be sent +for the outgoing SAs) rather than waiting for them to expire. This +reduces clutter and minimizes confusion for the operator doing diagnostics. +</t> + +</section> + +</section> + +</section> <!-- "Specification" --> + +<section title="Impacts on IKE"> + + <section title="ISAKMP/IKE protocol"> + <t> + The IKE wire protocol needs no modifications. The major changes are + implementation issues relating to how the proposals are interpreted, and from + whom they may come. + </t> + <t> + As opportunistic encryption is designed to be useful between peers without + prior operator configuration, an IKE daemon must be prepared to negotiate + phase 1 SAs with any node. This may require a large amount of resources to + maintain cookie state, as well as large amounts of entropy for nonces, + cookies and so on. + </t> + <t> + The major changes to support opportunistic encryption are at the IKE daemon + level. These changes relate to handling of key acquisition requests, lookup + of public keys and TXT records, and interactions with firewalls and other + security facilities that may be co-resident on the same gateway. + </t> + </section> + + <section title="Gateway discovery process"> + <t> + In a typical configured tunnel, the address of SG-B is provided + via configuration. Furthermore, the mapping of an SPD entry to a gateway is + typically a 1:1 mapping. When the 0.0.0.0/0 SPD entry technique is used, then + the mapping to a gateway is determined by the reverse DNS records. + </t> + <t> + The need to do a DNS lookup and wait for a reply will typically introduce a + new state and a new event source (DNS replies) to IKE. Although a +synchronous DNS request can be implemented for proof of concept, experience +is that it can cause very high latencies when a queue of queries must +all timeout in series. + </t> + <t> + Use of an asynchronous DNS lookup will also permit overlap of DNS lookups with + some of the protocol steps. + </t> + </section> + + <section title="Self identification"> + <t> + SG-A will have to establish its identity. Use an + IPv4 ID in phase 1. + </t> + <t> There are many situations where the administrator of SG-A may not be + able to control the reverse DNS records for SG-A's public IP address. + Typical situations include dialup connections and most residential-type broadband Internet access + (ADSL, cable-modem) connections. In these situations, a fully qualified domain + name that is under the control of SG-A's administrator may be used + when acting as an initiator only. + The FQDN ID should be used in phase 1. See <xref target="fqdn" /> + for more details and restrictions. + </t> + </section> + + <section title="Public key retrieval process"> + <t> + Upon receipt of a phase 1 SA proposal with either an IPv4 (IPv6) ID or + an FQDN ID, an IKE daemon needs to examine local caches and + configuration files to determine if this is part of a configured tunnel. + If no configured tunnels are found, then the implementation should attempt to retrieve + a KEY record from the reverse DNS in the case of an IPv4/IPv6 ID, or + from the forward DNS in the case of FQDN ID. + </t> + <t> + It is reasonable that if other non-local sources of policy are used + (COPS, LDAP), they be consulted concurrently but some + clear ordering of policy be provided. Note that due to variances in + latency, implementations must wait for positive or negative replies from all sources + of policy before making any decisions. + </t> + </section> + + <section title="Interactions with DNSSEC"> + <t> + The implementation described (1.98) neither uses DNSSEC directly to + explicitly verify the authenticity of zone information, nor uses the NXT + records to provide authentication of the absence of a TXT or KEY + record. Rather, this implementation uses a trusted path to a DNSSEC + capable caching resolver. + </t> + <t> + To distinguish between an authenticated and an unauthenticated DNS + resource record, a stub resolver capable of returning DNSSEC + information MUST be used. + </t> + + </section> + +<!-- + <section title="Interactions with COPS"> + <t> + At this time there is no experience with implementations that interact + with COPS Policy Decision Points (PDP) <xref target="RFC2748" />. It is + suggested that it may be + appropriate for many of + the policy and discovery mechanisms outlined here to be done by a PDP. + In this context, the IKE daemon present in the Policy Enforcement Point + (PEP) may not need any modifications. + </t> + </section> +--> + + <section title="Required proposal types"> + + <section anchor="phase1id" title="Phase 1 parameters"> + <t> + Main mode MUST be used. + </t> + <t> + The initiator MUST offer at least one proposal using some combination + of: 3DES, HMAC-MD5 or HMAC-SHA1, DH group 2 or 5. Group 5 SHOULD be + proposed first. + <xref target="RFC3526" /> + </t> + <t> + The initiator MAY offer additional proposals, but the cipher MUST not + be weaker than 3DES. The initiator SHOULD limit the number of proposals + such that the IKE datagrams do not need to be fragmented. + </t> + <t> + The responder MUST accept one of the proposals. If any configuration + of the responder is required then the responder is not acting in an + opportunistic way. + </t> + <t> + The initiator SHOULD use an ID_IPV4_ADDR (ID_IPV6_ADDR for IPv6) of the external + interface of the initiator for phase 1. (There is an exception, see <xref + target="fqdn" />.) The authentication method MUST be RSA public key signatures. + The RSA key for the initiator SHOULD be placed into a DNS KEY record in + the reverse space of the initiator (i.e. using in-addr.arpa or + ip6.arpa). + </t> + </section> + + <section anchor="phase2id" title="Phase 2 parameters"> + <t> + The initiator MUST propose a tunnel between the ultimate + sender ("Alice" or "A") and ultimate recipient ("Bob" or "B") + using 3DES-CBC + mode, MD5 or SHA1 authentication. Perfect Forward Secrecy MUST be specified. + </t> + <t> + Tunnel mode MUST be used. + </t> + <t> + Identities MUST be ID_IPV4_ADDR_SUBNET with the mask being /32. + </t> + <t> + Authorization for the initiator to act on Alice's behalf is determined by + looking for a TXT record in the reverse-map at Alice's IP address. + </t> + <t> + Compression SHOULD NOT be mandatory. It MAY be offered as an option. + </t> + </section> + </section> + +</section> + +<section title="DNS issues"> + <section anchor="KEY" title="Use of KEY record"> + <t> + In order to establish their own identities, security gateways SHOULD publish + their public keys in their reverse DNS via + DNSSEC's KEY record. + See section 3 of <xref target="RFC2535">RFC 2535</xref>. + </t> + <t> + <preamble>For example:</preamble> + <artwork><![CDATA[ +KEY 0x4200 4 1 AQNJjkKlIk9...nYyUkKK8 +]]></artwork> + + <list style="hanging"> + <t hangText="0x4200:"> The flag bits, indicating that this key is prohibited + for confidentiality use (it authenticates the peer only, a separate + Diffie-Hellman exchange is used for + confidentiality), and that this key is associated with the non-zone entity + whose name is the RR owner name. No other flags are set.</t> + <t hangText="4:">This indicates that this key is for use by IPsec.</t> + <t hangText="1:">An RSA key is present.</t> + <t hangText="AQNJjkKlIk9...nYyUkKK8:">The public key of the host as described in <xref target="RFC3110" />.</t> + </list> + </t> + <t>Use of several KEY records allows for key rollover. The SIG Payload in + IKE phase 1 SHOULD be accepted if the public key given by any KEY RR + validates it. + </t> + </section> + + <section anchor="TXT" title="Use of TXT delegation record"> + <t> +If, for example, machine Alice wishes SG-A to act on her behalf, then +she publishes a TXT record to provide authorization for SG-A to act on +Alice's behalf. Similarly for Bob and SG-B. +</t> + +<t> +These records are located in the reverse DNS (in-addr.arpa or ip6.arpa) for their +respective IP addresses. The reverse DNS SHOULD be secured by DNSSEC. +DNSSEC is required to defend against active attacks. + </t> + <t> + If Alice's address is P.Q.R.S, then she can authorize another node to + act on her behalf by publishing records at: + <artwork><![CDATA[ +S.R.Q.P.in-addr.arpa + ]]></artwork> + </t> + + <t> + The contents of the resource record are expected to be a string that + uses the following syntax, as suggested in <xref target="RFC1464">RFC1464</xref>. + (Note that the reply to query may include other TXT resource + records used by other applications.) + + <figure anchor="txtformat" title="Format of reverse delegation record"> + <artwork><![CDATA[ +X-IPsec-Server(P)=A.B.C.D KEY + ]]></artwork> + </figure> + </t> + + where the record is formed by the following fields: + + <list style="hanging"> + <t hangText="P:"> Specifies a precedence for this record. This is + similar to MX record preferences. Lower numbers have stronger + preference. + </t> + + <t hangText="A.B.C.D:"> Specifies the IP address of the Security Gateway + for this client machine. + </t> + + <t hangText="KEY:"> Is the encoded RSA Public key of the Security + Gateway. The key is provided here to avoid a second DNS lookup. If this + field is absent, then a KEY resource record should be looked up in the + reverse-map of A.B.C.D. The key is transmitted in base64 format. + </t> + </list> + + <t> + The fields of the record MUST be separated by whitespace. This + MAY be: space, tab, newline, or carriage return. A space is preferred. + </t> + + <t> + In the case where Alice is located at a public address behind a + security gateway that has no fixed address (or no control over its + reverse-map), then Alice may delegate to a public key by domain name. + + <figure anchor="txtfqdnformat" + title="Format of reverse delegation record (FQDN version)"> + <artwork><![CDATA[ +X-IPsec-Server(P)=@FQDN KEY + ]]></artwork> + </figure> + </t> + + <list style="hanging"> + <t hangText="P:"> Is as above. + </t> + + <t hangText="FQDN:"> Specifies the FQDN that the Security Gateway + will identify itself with. + </t> + + <t hangText="KEY:"> Is the encoded RSA Public key of the Security + Gateway. </t> + </list> + + <t> + If there is more than one such TXT record with strongest (lowest + numbered) precedence, one Security Gateway is picked arbitrarily from + those specified in the strongest-preference records. + </t> + + <section title="Long TXT records"> + <t> + When packed into transport format, TXT records which are longer than 255 + characters are divided into smaller <character-strings>. + (See <xref target="RFC1035" /> section 3.3 and 3.3.14.) These MUST + be reassembled into a single string for processing. + Whitespace characters in the base64 encoding are to be ignored. + </t> + </section> + + <section title="Choice of TXT record"> + <t> + It has been suggested to use the KEY, OPT, CERT, or KX records + instead of a TXT record. None is satisfactory. + </t> + <t> The KEY RR has a protocol field which could be used to indicate a new protocol, +and an algorithm field which could be used to + indicate different contents in the key data. However, the KEY record + is clearly not intended for storing what are really authorizations, + it is just for identities. Other uses have been discouraged. + </t> + <t> OPT resource records, as defined in <xref target="RFC2671" /> are not + intended to be used for storage of information. They are not to be loaded, + cached or forwarded. They are, therefore, inappropriate for use here. + </t> + <t> + CERT records <xref target="RFC2538" /> can encode almost any set of + information. A custom type code could be used permitting any suitable + encoding to be stored, not just X.509. According to + the RFC, the certificate RRs are to be signed internally which may add undesirable +and unnecessary bulk. Larger DNS records may require TCP instead of UDP transfers. + </t> + <t> + At the time of protocol design, the CERT RR was not widely deployed and + could not be counted upon. Use of CERT records will be investigated, + and may be proposed in a future revision of this document. + </t> + <t> + KX records are ideally suited for use instead of TXT records, but had not been deployed at + the time of implementation. +<!-- Jakob Schlyter <j@crt.se> confirmed --> + </t> + </section> + </section> + + <section anchor="fqdn" title="Use of FQDN IDs"> + <t> + Unfortunately, not every administrator has control over the contents + of the reverse-map. Where the initiator (SG-A) has no suitable reverse-map, the + authorization record present in the reverse-map of Alice may refer to a + FQDN instead of an IP address. + </t> + <t> + In this case, the client's TXT record gives the fully qualified domain + name (FQDN) in place of its security gateway's IP address. + The initiator should use the ID_FQDN ID-payload in phase 1. + A forward lookup for a KEY record on the FQDN must yield the + initiator's public key. + </t> + <t> + This method can also be used when the external address of SG-A is + dynamic. + </t> + <t> + If SG-A is acting on behalf of Alice, then Alice must still delegate + authority for SG-A to do so in her reverse-map. When Alice and SG-A + are one and the same (i.e. Alice is acting as an end-node) then there + is no need for this when initiating only. </t> + <t>However, Alice must still delegate to herself if she wishes others to + initiate OE to her. See <xref target="txtfqdnformat" />. + </t> + < + </section> + +<section title="Key roll-over"> +<t> +Good cryptographic hygiene says that one should replace public/private key pairs +periodically. Some administrators may wish to do this as often as daily. Typical DNS +propagation delays are determined by the SOA Resource Record MINIMUM +parameter, which controls how long DNS replies may be cached. For reasonable +operation of DNS servers, administrators usually want this value to be at least several +hours, sometimes as a long as a day. This presents a problem - a new key MUST +not be used prior to it propagating through DNS. +</t> +<t> +This problem is dealt with by having the Security Gateway generate a new +public/private key pair at least MINIMUM seconds in advance of using it. It +then adds this key to the DNS (both as a second KEY record and in additional TXT +delegation records) at key generation time. Note: only one key is allowed in +each TXT record. +</t> +<t> +When authenticating, all gateways MUST have available all public keys +that are found in DNS for this entity. This permits the authenticating end +to check both the key for "today" and the key for "tomorrow". Note that it is +the end which is creating the signature (possesses the private key) that +determines which key is to be used. +</t> + + </section> +</section> + + +<section title="Network address translation interaction"> + <t> + There are no fundamentally new issues for implementing opportunistic encryption + in the presence of network address translation. Rather there are + only the regular IPsec issues with NAT traversal. + </t> + <t> + There are several situations to consider for NAT. + </t> + <section title="Co-located NAT/NAPT"> + <t> + If a security gateway is also performing network address translation on + behalf of an end-system, then the packet should be translated prior to + being subjected to opportunistic encryption. This is in contrast to + typically configured tunnels which often exist to bridge islands of + private network address space. The security gateway will use the translated source + address for phase 2, and so the responding security gateway will look up that address to + confirm SG-A's authorization. + </t> + <t> In the case of NAT (1:1), the address space into which the + translation is done MUST be globally unique, and control over the + reverse-map is assumed. + Placing of TXT records is possible. + </t> + <t> In the case of NAPT (m:1), the address will be the security + gateway itself. The ability to get + KEY and TXT records in place will again depend upon whether or not + there is administrative control over the reverse-map. This is + identical to situations involving a single host acting on behalf of + itself. + + FQDN style can be used to get around a lack of a reverse-map for + initiators only. + </t> + </section> + + <section title="Security Gateway behind NAT/NAPT"> + <t> + If there is a NAT or NAPT between the security gateways, then normal IPsec + NAT traversal problems occur. In addition to the transport problem + which may be solved by other mechanisms, there is the issue of + what phase 1 and phase 2 IDs to use. While FQDN could + be used during phase 1 for the security gateway, there is no appropriate ID for phase 2. + Due to the NAT, the end systems live in different IP address spaces. + </t> + </section> + + <section title="End System is behind a NAT/NAPT"> + <t> + If the end system is behind a NAT (perhaps SG-B), then there is, in fact, no way for + another end system to address a packet to this end system. + Not only is opportunistic encryption + impossible, but it is also impossible for any communication to + be initiate to the end system. It may be possible for this end + system to initiate in such communication. This creates an asymmetry, but this is common for + NAPT. + </t> + </section> +</section> + +<section title="Host implementations"> +<t> + When Alice and SG-A are components of the same system, they are + considered to be a host implementation. The packet sequence scenario remains unchanged. +</t> +<t> + Components marked Alice are the upper layers (TCP, UDP, the + application), and SG-A is the IP layer. +</t> +<t> + Note that tunnel mode is still required. +</t> +<t> + As Alice and SG-A are acting on behalf of themselves, no TXT based delegation + record is necessary for Alice to initiate. She can rely on FQDN in a + forward map. This is particularly attractive to mobile nodes such as + notebook computers at conferences. + To respond, Alice/SG-A will still need an entry in Alice's reverse-map. +</t> +</section> + +<section title="Multi-homing"> +<t> +If there are multiple paths between Alice and Bob (as illustrated in +the diagram with SG-D), then additional DNS records are required to establish +authorization. +</t> +<t> +In <xref target="networkdiagram" />, Alice has two ways to +exit her network: SG-A and SG-D. Previously SG-D has been ignored. Postulate +that there are routers between Alice and her set of security gateways +(denoted by the + signs and the marking of an autonomous system number for +Alice's network). Datagrams may, therefore, travel to either SG-A or SG-D en +route to Bob. +</t> +<t> +As long as all network connections are in good order, it does not matter how +datagrams exit Alice's network. When they reach either security gateway, the +security gateway will find the TXT delegation record in Bob's reverse-map, +and establish an SA with SG-B. +</t> +<t> +SG-B has no problem establishing that either of SG-A or SG-D may speak for +Alice, because Alice has published two equally weighted TXT delegation records: + <figure anchor="txtmultiexample" + title="Multiple gateway delegation example for Alice"> + <artwork><![CDATA[ +X-IPsec-Server(10)=192.1.1.5 AQMM...3s1Q== +X-IPsec-Server(10)=192.1.1.6 AAJN...j8r9== + ]]></artwork> + </figure> +</t> +<t> +Alice's routers can now do any kind of load sharing needed. Both SG-A and SG-D send datagrams addressed to Bob through +their tunnel to SG-B. +</t> +<t> +Alice's use of non-equal weight delegation records to show preference of one gateway over another, has relevance only when SG-B +is initiating to Alice. +</t> +<t> +If the precedences are the same, then SG-B has a more difficult time. It +must decide which of the two tunnels to use. SG-B has no information about +which link is less loaded, nor which security gateway has more cryptographic +resources available. SG-B, in fact, has no knowledge of whether both gateways +are even reachable. +</t> +<t> +The Public Internet's default-free zone may well know a good route to Alice, +but the datagrams that SG-B creates must be addressed to either SG-A or SG-D; +they can not be addressed to Alice directly. +</t> +<t> +SG-B may make a number of choices: +<list style="numbers"> +<t>It can ignore the problem and round robin among the tunnels. This + causes losses during times when one or the other security gateway is + unreachable. If this worries Alice, she can change the weights in her + TXT delegation records.</t> + +<t>It can send to the gateway from which it most recently received datagrams. + This assumes that routing and reachability are symmetrical.</t> + +<t>It can listen to BGP information from the Internet to decide which + system is currently up. This is clearly much more complicated, but if SG-B is already participating + in the BGP peering system to announce Bob, the results data may already + be available to it. </t> + +<t>It can refuse to negotiate the second tunnel. (It is unclear whether or +not this is even an option.)</t> + +<t>It can silently replace the outgoing portion of the first tunnel with the +second one while still retaining the incoming portions of both. SG-B can, +thus, accept datagrams from either SG-A or SG-D, but +send only to the gateway that most recently re-keyed with it.</t> +</list> +</t> + +<t> +Local policy determines which choice SG-B makes. Note that even if SG-B has perfect +knowledge about the reachability of SG-A and SG-D, Alice may not be reachable +from either of these security gateways because of internal reachability +issues. +</t> + +<t> +FreeS/WAN implements option 5. Implementing a different option is +being considered. The multi-homing aspects of OE are not well developed and may +be the subject of a future document. +</t> + +</section> + +<section title="Failure modes"> + <section title="DNS failures"> + <t> + If a DNS server fails to respond, local policy decides + whether or not to permit communication in the clear as embodied in + the connection classes in <xref target="initclasses" />. + It is easy to mount a denial of service attack on the DNS server + responsible for a particular network's reverse-map. + Such an attack may cause all communication with that network to go in + the clear if the policy is permissive, or fail completely + if the policy is paranoid. Please note that this is an active attack. + </t> + <t> + There are still many networks + that do not have properly configured reverse-maps. Further, if the policy is not to communicate, + the above denial of service attack isolates the target network. Therefore, the decision of whether +or not to permit communication in the clear MUST be a matter of local policy. + </t> + </section> + + <section title="DNS configured, IKE failures"> + <t> + DNS records claim that opportunistic encryption should + occur, but the target gateway either does not respond on port 500, or + refuses the proposal. This may be because of a crash or reboot, a + faulty configuration, or a firewall filtering port 500. + </t> + <t> + The receipt of ICMP port, host or network unreachable + messages indicates a potential problem, but MUST NOT cause communication + to fail + immediately. ICMP messages are easily forged by attackers. If such a + forgery caused immediate failure, then an active attacker could easily + prevent any + encryption from ever occurring, possibly preventing all communication. + </t> + <t> + In these situations a clear log should be produced + and local policy should dictate if communication is then + permitted in the clear. + </t> + </section> + + <section title="System reboots"> +<t> +Tunnels sometimes go down because the remote end crashes, +disconnects, or has a network link break. In general there is no +notification of this. Even in the event of a crash and successful reboot, +other SGs don't hear about it unless the rebooted SG has specific +reason to talk to them immediately. Over-quick response to temporary +network outages is undesirable. Note that a tunnel can be torn +down and then re-established without any effect visible to the user +except a pause in traffic. On the other hand, if one end reboots, +the other end can't get datagrams to it at all (except via +IKE) until the situation is noticed. So a bias toward quick +response is appropriate even at the cost of occasional +false alarms. +</t> + +<t> +A mechanism for recovery after reboot is a topic of current research and is not specified in this +document. +</t> + +<t> +A deliberate shutdown should include an attempt, using deletes, to notify all other SGs +currently connected by phase 1 SAs that communication is +about to fail. Again, a remote SG will assume this is a teardown. Attempts by the +remote SGs to negotiate new tunnels as replacements should be ignored. When possible, +SGs should attempt to preserve information about currently-connected SGs in non-volatile storage, so +that after a crash, an Initial-Contact can be sent to previous partners to +indicate loss of all previously established connections. +</t> + + </section> +</section> + +<!-- +<section title="Performance experiences"> + + Claudia> Is it useful to point out (or to clarify for our own discussion) any of the + Claudia> following: + + Claudia> * how much time this is likely to take on typical current hardware? + Claudia> * what steps are likely to be time consuming + Claudia> * how any added time could affect a typical transaction, such as hitting + Claudia> a web site + Claudia> * any ways to minimize such time delays + + <section title="Introduced latency"> + </section> + + <section title="Cryptographic performance"> + </section> + + <section title="Phase 1 SA performance"> + </section> + +</section> +--> + +<section title="Unresolved issues"> + <section title="Control of reverse DNS"> + <t> + The method of obtaining information by reverse DNS lookup causes + problems for people who cannot control their reverse DNS + bindings. This is an unresolved problem in this version, and is out + of scope. + </t> + </section> +</section> + +<section title="Examples"> + +<section title="Clear-text usage (permit policy)"> + +<t> +Two example scenarios follow. In the first example GW-A +(Gateway A) and GW-B (Gateway B) have always-clear-text policies, and in the second example they have an OE +policy. The clear-text policy serves as a reference for what occurs in +TCP/IP in the absence of Opportunistic Encryption. + +<t> +Alice wants to communicate with Bob. Perhaps she wants to retrieve a +web page from Bob's web server. In the absence of opportunistic +encryptors, the following events occur: +</t> + + <figure anchor="regulartiming" title="Timing of regular transaction"> + <artwork><![CDATA[ + Alice SG-A DNS SG-B Bob + Human or application + 'clicks' with a name. + (1) + + ------(2)--------------> + Application looks up + name in DNS to get + IP address. + + <-----(3)--------------- + Resolver returns "A" RR + to application with IP + address. + + (4) + Application starts a TCP session + or UDP session and OS sends + first datagram + + ----(5)-----> + Datagram is seen at first gateway + from Alice (SG-A). + + ----------(6)------> + Datagram traverses + network. + + ------(7)-----> + Datagram arrives + at Bob, is provided + to TCP. + + <------(8)------ + A reply is sent. + + <----------(9)------ + Datagram traverses + network. + <----(10)----- + Alice receives + answer. + + (11)-----------> + A second exchange + occurs. + ----------(12)-----> + --------------> + <--------------- + <------------------- + <------------- + ]]></artwork> +</figure> + +</t> +</section> + +<section title="Opportunistic encryption"> + +<t> +In the presence of properly configured opportunistic encryptors, the +event list is extended. Only changes are annotated. +</t> + +<t>The following symbols are used in the time-sequence diagram</t> + +<t> +<list style="hanging"> + <t hangText="-"> A single dash represents clear-text datagrams.</t> + <t hangText="="> An equals sign represents phase 2 (IPsec) cipher-text + datagrams.</t> + <t hangText="~"> A single tilde represents clear-text phase 1 datagrams.</t> + <t hangText="#"> A hash sign represents phase 1 (IKE) cipher-text + datagrams.</t> +</list> +</t> + +<t> +<figure anchor="opportunistictiming" title="Timing of opportunistic encryption transaction"> + <artwork><![CDATA[ + Alice SG-A DNS SG-B Bob + (1) + ------(2)--------------> + <-----(3)--------------- + (4)----(5)----->+ + SG-A sees datagram + to new target and + saves it as "first" + + ----(5B)-> + SG-A asks DNS + for TXT RR. + + <---(5C)-- + DNS returns TXT RR. + + ~~~~~~~~~~~~~(5D)~~~> + initial IKE main mode + packet is sent. + + <~~~~~~~~~~~~(5E1)~~~ + ~~~~~~~~~~~~~(5E2)~~> + <~~~~~~~~~~~~(5E3)~~~ + IKE phase 1 - privacy. + + #############(5E4)##> + SG-A sends ID to SG-B + <----(5F1)-- + SG-B asks DNS + for SG-A's public + KEY + -----(5F2)-> + DNS provides KEY RR. + SG-B authenticates SG-A + + <############(5E5)### + IKE phase 1 - complete + + #############(5G1)##> + IKE phase 2 - Alice<->Bob + tunnel is proposed. + + <----(5H1)-- + SG-B asks DNS for + Alice's TXT record. + -----(5H2)-> + DNS replies with TXT + record. SG-B checks + SG-A's authorization. + + <############(5G2)### + SG-B accepts proposal. + + #############(5G3)##> + SG-A confirms. + + ============(6)====> + SG-A sends "first" + packet in new IPsec + SA. + ------(7)-----> + packet is decrypted + and forward to Bob. + <------(8)------ + <==========(9)====== + return packet also + encrypted. + <-----(10)---- + + (11)-----------> + a second packet + is sent by Alice + ==========(12)=====> + existing tunnel is used + --------------> + <--------------- + <=================== + <------------- + ]]></artwork> +</figure> + +</t> + + <t> + For the purposes of this section, we will describe only the changes that + occur between <xref target="regulartiming" /> and + <xref target="opportunistictiming" />. This corresponds to time points 5, 6, 7, 9 and 10 on the list above. + </t> + +<list style="symbols"> + <t> + At point (5), SG-A intercepts the datagram because this source/destination pair lacks a policy +(the non-existent policy state). SG-A creates a hold policy, and buffers the datagram. SG-A requests keys from the keying daemon. + </t> + + <t> + SG-A's IKE daemon, having looked up the source/destination pair in the connection + class list, creates a new Potential OE connection instance. SG-A starts DNS + queries. + </t> + </section> + + <section title="(5C) DNS returns TXT record(s)"> + + <t> + DNS returns properly formed TXT delegation records, and SG-A's IKE daemon + causes this instance to make a transition from Potential OE connection to Pending OE + connection. + </t> + + <t> + Using the example above, the returned record might contain: + + <figure anchor="txtexample" + title="Example of reverse delegation record for Bob"> + <artwork><![CDATA[ +X-IPsec-Server(10)=192.1.1.5 AQMM...3s1Q== + ]]></artwork> + </figure> + with SG-B's IP address and public key listed. + </t> + + </section> + + <section title="(5D) Initial IKE main mode packet goes out"> + <t>Upon entering Pending OE connection, SG-A sends the initial ISAKMP + message with proposals. See <xref target="phase1id" />. + </t> + </section> + + <section title="(5E1) Message 2 of phase 1 exchange"> + <t> + SG-B receives the message. A new connection instance is created in the + unauthenticated OE peer state. + </t> + </section> + + <section title="(5E2) Message 3 of phase 1 exchange"> + <t> + SG-A sends a Diffie-Hellman exponent. This is an internal state of the + keying daemon. + </t> + </section> + + <section title="(5E3) Message 4 of phase 1 exchange"> + <t> + SG-B responds with a Diffie-Hellman exponent. This is an internal state of the + keying protocol. + </t> + </section> + + <section title="(5E4) Message 5 of phase 1 exchange"> + <t> + SG-A uses the phase 1 SA to send its identity under encryption. + The choice of identity is discussed in <xref target="phase1id" />. + This is an internal state of the keying protocol. + </t> + </section> + + <section title="(5F1) Responder lookup of initiator key"> + <t> + SG-B asks DNS for the public key of the initiator. + DNS looks for a KEY record by IP address in the reverse-map. + That is, a KEY resource record is queried for 4.1.1.192.in-addr.arpa + (recall that SG-A's external address is 192.1.1.4). + SG-B uses the resulting public key to authenticate the initiator. See <xref + target="KEY" /> for further details. + </t> + </section> + +<section title="(5F2) DNS replies with public key of initiator"> +<t> +Upon successfully authenticating the peer, the connection instance makes a +transition to authenticated OE peer on SG-B. +</t> +<t> +The format of the TXT record returned is described in +<xref target="TXT" />. +</t> +</section> + + <section title="(5E5) Responder replies with ID and authentication"> + <t> + SG-B sends its ID along with authentication material. This is an internal + state for the keying protocol. + </t> + </section> + + <section title="(5G) IKE phase 2"> + <section title="(5G1) Initiator proposes tunnel"> + <t> + Having established mutually agreeable authentications (via KEY) and + authorizations (via TXT), SG-A proposes to create an IPsec tunnel for + datagrams transiting from Alice to Bob. This tunnel is established only for + the Alice/Bob combination, not for any subnets that may be behind SG-A and SG-B. + </t> + </section> + + <section title="(5H1) Responder determines initiator's authority"> + <t> + While the identity of SG-A has been established, its authority to + speak for Alice has not yet been confirmed. SG-B does a reverse + lookup on Alice's address for a TXT record. + </t> + <t>Upon receiving this specific proposal, SG-B's connection instance + makes a transition into the potential OE connection state. SG-B may already have an + instance, and the check is made as described above.</t> + </section> + + <section title="(5H2) DNS replies with TXT record(s)"> + <t> + The returned key and IP address should match that of SG-A. + </t> + </section> + + <section title="(5G2) Responder agrees to proposal"> + <t> + Should additional communication occur between, for instance, Dave and Bob using + SG-A and SG-B, a new tunnel (phase 2 SA) would be established. The phase 1 SA + may be reusable. + </t> + <t>SG-A, having successfully keyed the tunnel, now makes a transition from + Pending OE connection to Keyed OE connection. + </t> + <t>The responder MUST setup the inbound IPsec SAs before sending its reply.</t> + </section> + + <section title="(5G3) Final acknowledgment from initiator"> + <t> + The initiator agrees with the responder's choice and sets up the tunnel. + The initiator sets up the inbound and outbound IPsec SAs. + </t> + <t> + The proper authorization returned with keys prompts SG-B to make a transition + to the keyed OE connection state. + </t> + <t>Upon receipt of this message, the responder may now setup the outbound + IPsec SAs.</t> + </section> + </section> + + <section title="(6) IPsec succeeds, and sets up tunnel for communication between Alice and Bob"> + <t> + SG-A sends the datagram saved at step (5) through the newly created + tunnel to SG-B, where it gets decrypted and forwarded. + Bob receives it at (7) and replies at (8). + </t> + </section> + + <section title="(9) SG-B already has tunnel up with G1 and uses it"> + <t> + At (9), SG-B has already established an SPD entry mapping Bob->Alice via a + tunnel, so this tunnel is simply applied. The datagram is encrypted to SG-A, + decrypted by SG-A and passed to Alice at (10). + </t> + + </section> +</section> <!-- OE example --> + +</section> <!-- Examples --> + +<section anchor="securityconsiderations" title="Security considerations"> + + <section title="Configured vs opportunistic tunnels"> +<t> + Configured tunnels are those which are setup using bilateral mechanisms: exchanging +public keys (raw RSA, DSA, PKIX), pre-shared secrets, or by referencing keys that +are in known places (distinguished name from LDAP, DNS). These keys are then used to +configure a specific tunnel. +</t> +<t> +A pre-configured tunnel may be on all the time, or may be keyed only when needed. +The end points of the tunnel are not necessarily static: many mobile +applications (road warrior) are considered to be configured tunnels. +</t> +<t> +The primary characteristic is that configured tunnels are assigned specific +security properties. They may be trusted in different ways relating to exceptions to +firewall rules, exceptions to NAT processing, and to bandwidth or other quality of service restrictions. +</t> +<t> +Opportunistic tunnels are not inherently trusted in any strong way. They are +created without prior arrangement. As the two parties are strangers, there +MUST be no confusion of datagrams that arrive from opportunistic peers and +those that arrive from configured tunnels. A security gateway MUST take care +that an opportunistic peer can not impersonate a configured peer. +</t> +<t> +Ingress filtering MUST be used to make sure that only datagrams authorized by +negotiation (and the concomitant authentication and authorization) are +accepted from a tunnel. This is to prevent one peer from impersonating another. +</t> +<t> +An implementation suggestion is to treat opportunistic tunnel +datagrams as if they arrive on a logical interface distinct from other +configured tunnels. As the number of opportunistic tunnels that may be +created automatically on a system is potentially very high, careful attention +to scaling should be taken into account. +</t> +<t> +As with any IKE negotiation, opportunistic encryption cannot be secure +without authentication. Opportunistic encryption relies on DNS for its +authentication information and, therefore, cannot be fully secure without +a secure DNS. Without secure DNS, opportunistic encryption can protect against passive +eavesdropping but not against active man-in-the-middle attacks. +</t> + </section> + + <section title="Firewalls versus Opportunistic Tunnels"> +<t> + Typical usage of per datagram access control lists is to implement various +kinds of security gateways. These are typically called "firewalls". +</t> +<t> + Typical usage of a virtual private network (VPN) within a firewall is to +bypass all or part of the access controls between two networks. Additional +trust (as outlined in the previous section) is given to datagrams that arrive +in the VPN. +</t> +<t> + Datagrams that arrive via opportunistically configured tunnels MUST not be +trusted. Any security policy that would apply to a datagram arriving in the +clear SHOULD also be applied to datagrams arriving opportunistically. +</t> + </section> + + <section title="Denial of service"> +<t> + There are several different forms of denial of service that an implementor + should concern themselves with. Most of these problems are shared with + security gateways that have large numbers of mobile peers (road warriors). +</t> +<t> + The design of ISAKMP/IKE, and its use of cookies, defend against many kinds + of denial of service. Opportunism changes the assumption that if the phase 1 (ISAKMP) + SA is authenticated, that it was worthwhile creating. Because the gateway will communicate with any machine, it is + possible to form phase 1 SAs with any machine on the Internet. +</t> + +</section> +</section> + +<section title="IANA Considerations"> +<t> + There are no known numbers which IANA will need to manage. +</t> +</section> + +<section title="Acknowledgments"> +<t> + Substantive portions of this document are based upon previous work by + Henry Spencer. +</t> +<t> + Thanks to Tero Kivinen, Sandy Harris, Wes Hardarker, Robert Moskowitz, + Jakob Schlyter, Bill Sommerfeld, John Gilmore and John Denker for their + comments and constructive criticism. +</t> +<t> + Sandra Hoffman and Bill Dickie did the detailed proof reading and editing. +</t> +</section> + +</middle> + +<back> +<references title="Normative references"> +<?rfc include="reference.OEspec" ?> +<!-- renumber according to reference order --> +<?rfc include="reference.RFC.0791" ?> +<?rfc include="reference.RFC.1009" ?> +<?rfc include="reference.RFC.1984" ?> +<?rfc include="reference.RFC.2119" ?> +<!-- IPsec --> +<?rfc include="reference.RFC.2367" ?> +<?rfc include="reference.RFC.2401" ?> +<?rfc include="reference.RFC.2407" ?> +<?rfc include="reference.RFC.2408" ?> +<?rfc include="reference.RFC.2409" ?> +<!-- MODPGROUPS --> +<?rfc include="reference.RFC.3526" ?> +<!-- DNSSEC --> +<?rfc include="reference.RFC.1034" ?> +<?rfc include="reference.RFC.1035" ?> +<?rfc include="reference.RFC.2671" ?> +<?rfc include="reference.RFC.1464" ?> +<?rfc include="reference.RFC.2535" ?> +<?rfc include="reference.RFC.3110" ?> +<?rfc include="reference.RFC.2538" ?> +<!-- COPS --> +<?rfc include="reference.RFC.2748" ?> +<!-- NAT --> +<?rfc include="reference.RFC.2663" ?> +</references> +<!-- <references title="Non-normative references"> --> +<!-- ESPUDP --> +<!-- <?rfc include="reference.ESPUDP" ?> --> +<!-- </references> --> +</back> +</rfc> +<!-- + $Id: draft-richardson-ipsec-opportunistic.xml,v 1.1 2004/03/15 20:35:24 as Exp $ + + $Log: draft-richardson-ipsec-opportunistic.xml,v $ + Revision 1.1 2004/03/15 20:35:24 as + added files from freeswan-2.04-x509-1.5.3 + + Revision 1.33 2003/06/30 03:19:59 mcr + timing-diagram with inline explanation. + + Revision 1.32 2003/06/30 01:57:44 mcr + initial edits per-Bob Braden. + + Revision 1.31 2003/05/26 19:31:23 mcr + updates to drafts - IPSEC RR - SC versions, and RFC3526 + reference in OE draft. + + Revision 1.30 2003/05/21 15:42:34 mcr + updates due to publication of RFC 3526. + + Revision 1.29 2003/01/17 16:22:55 mcr + rev 11 of OE draft. + + Revision 1.28 2002/07/25 19:27:31 mcr + added DHR's minor edits. + + Revision 1.27 2002/07/21 16:26:26 mcr + slides from presentation at OLS + draft-10 of OE draft. + + Revision 1.26 2002/07/16 03:46:53 mcr + second edits from Sandra. + + Revision 1.25 2002/07/16 03:36:14 mcr + removed HS from authors list + updated reference inclusion to use <?rfc-include directive. + Revision 1.24 2002/07/11 02:08:21 mcr + updated XML file from Sandra + + Revision 1.23 2002/06/06 17:18:53 mcr + spellcheck. + + Revision 1.22 2002/06/06 17:14:19 mcr + results of hand-editing session from May 28th. + This is FINAL OE draft. + + Revision 1.21 2002/06/06 02:25:44 mcr + results of hand-editing session from May 28th. + This is FINAL OE draft. + + Revision 1.20 2002/05/24 03:28:37 mcr + changes as requested by RFC editor. + + Revision 1.19 2002/04/09 16:01:05 mcr + comments from PHB. + + Revision 1.18 2002/04/08 02:14:34 mcr + RGBs changes to rev6. + + Revision 1.17 2002/03/12 21:23:55 mcr + adjusted definition of default-free zone. + moved text on key rollover from format description to new + section. + + Revision 1.16 2002/02/22 01:23:21 mcr + revisions from MCR (2002/2/18) and net. + + Revision 1.15 2002/02/21 20:44:12 mcr + extensive from DHR. + + Revision 1.14 2002/02/10 16:20:39 mcr + -05 draft. Many revisions to do "OE system in world of OE systems" + view of the universe. + + Revision 1.13 2001/12/20 04:35:22 mcr + fixed reference to rfc1984. + + Revision 1.12 2001/12/20 03:35:19 mcr + comments from Henry, Tero, and Sandy. + + Revision 1.11 2001/12/19 07:26:22 mcr + added comment about KX records. + + Revision 1.10 2001/11/09 04:28:10 mcr + fixed some typos with XML, and one s/SG-B/SG-D/. + + Revision 1.9 2001/11/09 04:07:13 mcr + expanded section 10: multihoming, with an example. + + Revision 1.8 2001/11/09 02:16:51 mcr + added lifetime/lifespan definitions. + moved example from 5B to 5C. + added reference to phase 1 IDs to 5D. + cleared up text in aging section. + added text about delegation of DNSSEC activity to a DNS server. + spelt out DH group names. + added text about ignoring TXT records unless DNSSEC is deployed (somerfeld) + added example of TXT delegation using FQDN. + clarified some text in NAT interaction section. + clarified absense of TXT record need for host implementation + + Revision 1.7 2001/11/08 23:09:37 mcr + changed revision of draft to 03. + + Revision 1.6 2001/11/08 19:37:14 mcr + fixed some formatting of Aging section. + + Revision 1.5 2001/11/08 19:19:30 mcr + fixed address for DHR, updated address for MCR, + added reference to original HS/DHR OE specification paper. + + Revision 1.4 2001/11/08 19:08:24 mcr + section 10, "Renewal and Teardown" added moved between 4/5, and + slightly rewritten. + + Revision 1.3 2001/11/08 18:56:34 mcr + sections 4.2, 5.6, 5.7.1 and 6.2 edited as per HS. + section 10, "Renewal and Teardown" added. + section 11, "Failure modes" completed. + + Revision 1.2 2001/11/05 20:31:31 mcr + added section from OE spec on aging and teardown. + + Revision 1.1 2001/11/05 04:27:58 mcr + OE draft added to documentation. + + Revision 1.12 2001/10/10 01:12:31 mcr + removed impact on DNS servers section. + removed nested comments. + adjusted data of issue + + Revision 1.11 2001/09/17 02:55:50 mcr + outline is now stable. + + Revision 1.5 2001/08/19 02:53:32 mcr + version 00d formatted. + + Revision 1.10 2001/08/19 02:34:04 mcr + version 00d formatted. + + Revision 1.9 2001/08/19 02:21:54 mcr + version 00d + + Revision 1.8 2001/07/20 19:07:06 mcr + commented out section 1.1 + + Revision 1.7 2001/07/20 14:14:22 mcr + HS and HD comments. + + Revision 1.6 2001/07/19 00:56:50 mcr + version 00b. + + Revision 1.5 2001/07/12 23:57:07 mcr + OE ID, 00. + + +!> |