summaryrefslogtreecommitdiff
path: root/programs/pluto/pkcs1.h
diff options
context:
space:
mode:
Diffstat (limited to 'programs/pluto/pkcs1.h')
-rw-r--r--programs/pluto/pkcs1.h88
1 files changed, 88 insertions, 0 deletions
diff --git a/programs/pluto/pkcs1.h b/programs/pluto/pkcs1.h
new file mode 100644
index 000000000..c927db0f8
--- /dev/null
+++ b/programs/pluto/pkcs1.h
@@ -0,0 +1,88 @@
+/* Support of PKCS#1 private key data structures
+ * Copyright (C) 2005 Jan Hutter, Martin Willi
+ * Copyright (C) 2002-2005 Andreas Steffen
+ * Hochschule fuer Technik Rapperswil, Switzerland
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * RCSID $Id: pkcs1.h,v 1.14 2005/12/06 22:52:12 as Exp $
+ */
+
+#ifndef _PKCS1_H
+#define _PKCS1_H
+
+#include <gmp.h> /* GNU Multi Precision library */
+
+#include "defs.h"
+
+typedef struct RSA_public_key RSA_public_key_t;
+
+struct RSA_public_key
+{
+ char keyid[KEYID_BUF]; /* see ipsec_keyblobtoid(3) */
+
+ /* length of modulus n in octets: [RSA_MIN_OCTETS, RSA_MAX_OCTETS] */
+ unsigned k;
+
+ /* public: */
+ MP_INT
+ n, /* modulus: p * q */
+ e; /* exponent: relatively prime to (p-1) * (q-1) [probably small] */
+};
+
+typedef struct RSA_private_key RSA_private_key_t;
+
+struct RSA_private_key {
+ struct RSA_public_key pub; /* must be at start for RSA_show_public_key */
+
+ MP_INT
+ d, /* private exponent: (e^-1) mod ((p-1) * (q-1)) */
+ /* help for Chinese Remainder Theorem speedup: */
+ p, /* first secret prime */
+ q, /* second secret prime */
+ dP, /* first factor's exponent: (e^-1) mod (p-1) == d mod (p-1) */
+ dQ, /* second factor's exponent: (e^-1) mod (q-1) == d mod (q-1) */
+ qInv; /* (q^-1) mod p */
+};
+
+struct fld {
+ const char *name;
+ size_t offset;
+};
+
+extern const struct fld RSA_private_field[];
+#define RSA_PRIVATE_FIELD_ELEMENTS 8
+
+extern void init_RSA_public_key(RSA_public_key_t *rsa, chunk_t e, chunk_t n);
+extern bool pkcs1_parse_private_key(chunk_t blob, RSA_private_key_t *key);
+extern chunk_t pkcs1_build_private_key(const RSA_private_key_t *key);
+extern chunk_t pkcs1_build_public_key(const RSA_public_key_t *rsa);
+extern chunk_t pkcs1_build_publicKeyInfo(const RSA_public_key_t *rsa);
+extern chunk_t pkcs1_build_signature(chunk_t tbs, int hash_alg
+ , const RSA_private_key_t *key, bool bit_string);
+extern bool compute_digest(chunk_t tbs, int alg, chunk_t *digest);
+extern void sign_hash(const RSA_private_key_t *k, const u_char *hash_val
+ , size_t hash_len, u_char *sig_val, size_t sig_len);
+extern chunk_t RSA_encrypt(const RSA_public_key_t *key, chunk_t in);
+extern bool RSA_decrypt(const RSA_private_key_t *key, chunk_t in
+ , chunk_t *out);
+extern bool same_RSA_public_key(const RSA_public_key_t *a
+ , const RSA_public_key_t *b);
+extern void form_keyid(chunk_t e, chunk_t n, char* keyid, unsigned *keysize);
+extern err_t RSA_private_key_sanity(RSA_private_key_t *k);
+#ifdef DEBUG
+extern void RSA_show_public_key(RSA_public_key_t *k);
+extern void RSA_show_private_key(RSA_private_key_t *k);
+#endif
+extern void free_RSA_public_content(RSA_public_key_t *rsa);
+extern void free_RSA_private_content(RSA_private_key_t *rsak);
+
+#endif /* _PKCS1_H */