diff options
Diffstat (limited to 'src/libstrongswan/plugins/aes/aes_crypter.c')
-rw-r--r-- | src/libstrongswan/plugins/aes/aes_crypter.c | 687 |
1 files changed, 65 insertions, 622 deletions
diff --git a/src/libstrongswan/plugins/aes/aes_crypter.c b/src/libstrongswan/plugins/aes/aes_crypter.c index 6b3d03cea..f9775c8b8 100644 --- a/src/libstrongswan/plugins/aes/aes_crypter.c +++ b/src/libstrongswan/plugins/aes/aes_crypter.c @@ -49,90 +49,29 @@ struct private_aes_crypter_t { /** * Number of words in the key input block. */ - u_int32_t aes_Nkey; + u_int32_t aes_Nkey; /** * The number of cipher rounds. */ - u_int32_t aes_Nrnd; + u_int32_t aes_Nrnd; /** * The encryption key schedule. */ - u_int32_t aes_e_key[AES_KS_LENGTH]; + u_int32_t aes_e_key[AES_KS_LENGTH]; /** * The decryption key schedule. */ - u_int32_t aes_d_key[AES_KS_LENGTH]; + u_int32_t aes_d_key[AES_KS_LENGTH]; /** * Key size of this AES cypher object. */ - u_int32_t key_size; + u_int32_t key_size; }; - -/* ugly macro stuff */ - -/* 1. Define UNROLL for full loop unrolling in encryption and decryption. - * 2. Define PARTIAL_UNROLL to unroll two loops in encryption and decryption. - * 3. Define FIXED_TABLES for compiled rather than dynamic tables. - * 4. Define FF_TABLES to use tables for field multiplies and inverses. - * Do not enable this without understanding stack space requirements. - * 5. Define ARRAYS to use arrays to hold the local state block. If this - * is not defined, individually declared 32-bit words are used. - * 6. Define FAST_VARIABLE if a high speed variable block implementation - * is needed (essentially three separate fixed block size code sequences) - * 7. Define either ONE_TABLE or FOUR_TABLES for a fast table driven - * version using 1 table (2 kbytes of table space) or 4 tables (8 - * kbytes of table space) for higher speed. - * 8. Define either ONE_LR_TABLE or FOUR_LR_TABLES for a further speed - * increase by using tables for the last rounds but with more table - * space (2 or 8 kbytes extra). - * 9. If neither ONE_TABLE nor FOUR_TABLES is defined, a compact but - * slower version is provided. - * 10. If fast decryption key scheduling is needed define ONE_IM_TABLE - * or FOUR_IM_TABLES for higher speed (2 or 8 kbytes extra). - */ - -#define UNROLL -//#define PARTIAL_UNROLL - -#define FIXED_TABLES -//#define FF_TABLES -//#define ARRAYS -#define FAST_VARIABLE - -//#define ONE_TABLE -#define FOUR_TABLES - -//#define ONE_LR_TABLE -#define FOUR_LR_TABLES - -//#define ONE_IM_TABLE -#define FOUR_IM_TABLES - -#if defined(UNROLL) && defined (PARTIAL_UNROLL) -#error both UNROLL and PARTIAL_UNROLL are defined -#endif - -#if defined(ONE_TABLE) && defined (FOUR_TABLES) -#error both ONE_TABLE and FOUR_TABLES are defined -#endif - -#if defined(ONE_LR_TABLE) && defined (FOUR_LR_TABLES) -#error both ONE_LR_TABLE and FOUR_LR_TABLES are defined -#endif - -#if defined(ONE_IM_TABLE) && defined (FOUR_IM_TABLES) -#error both ONE_IM_TABLE and FOUR_IM_TABLES are defined -#endif - -#if defined(AES_BLOCK_SIZE) && AES_BLOCK_SIZE != 16 && AES_BLOCK_SIZE != 24 && AES_BLOCK_SIZE != 32 -#error an illegal block size has been specified -#endif - /** * Rotates bytes within words by n positions, moving bytes * to higher index positions with wrap around into low positions. @@ -179,31 +118,6 @@ struct private_aes_crypter_t { #define const_word_out(x,v) ((const unsigned char *)(x))[0]=(v),((const unsigned char *)(x))[1]=((v)>>8),((const unsigned char *)(x))[2]=((v)>>16),((const unsigned char *)(x))[3]=((v)>>24) #endif -// Disable at least some poor combinations of options - -#if !defined(ONE_TABLE) && !defined(FOUR_TABLES) -#define FIXED_TABLES -#undef UNROLL -#undef ONE_LR_TABLE -#undef FOUR_LR_TABLES -#undef ONE_IM_TABLE -#undef FOUR_IM_TABLES -#elif !defined(FOUR_TABLES) -#ifdef FOUR_LR_TABLES -#undef FOUR_LR_TABLES -#define ONE_LR_TABLE -#endif -#ifdef FOUR_IM_TABLES -#undef FOUR_IM_TABLES -#define ONE_IM_TABLE -#endif -#elif !defined(AES_BLOCK_SIZE) -#if defined(UNROLL) -#define PARTIAL_UNROLL -#undef UNROLL -#endif -#endif - // the finite field modular polynomial and elements #define ff_poly 0x011b @@ -228,84 +142,6 @@ struct private_aes_crypter_t { #define fwd_mcol(x) (f2 = FFmulX(x), f2 ^ upr(x ^ f2,3) ^ upr(x,2) ^ upr(x,1)) -#if defined(FIXED_TABLES) - -// the S-Box table - -static const unsigned char s_box[256] = -{ - 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, - 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, - 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, - 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, - 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, - 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, - 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, - 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, - 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, - 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, - 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, - 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, - 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, - 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, - 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, - 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, - 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, - 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, - 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, - 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, - 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, - 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, - 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, - 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, - 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, - 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, - 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, - 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, - 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, - 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, - 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, - 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 -}; - -// the inverse S-Box table - -static const unsigned char inv_s_box[256] = -{ - 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, - 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, - 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, - 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, - 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, - 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, - 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, - 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, - 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, - 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, - 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, - 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, - 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, - 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, - 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, - 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, - 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, - 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, - 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, - 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, - 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, - 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, - 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, - 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, - 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, - 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, - 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, - 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, - 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, - 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, - 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, - 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d -}; - #define w0(p) 0x000000##p // Number of elements required in this table for different @@ -343,8 +179,6 @@ static const u_int32_t rcon_tab[29] = #define w2(p) 0x00##p##0000 #define w3(p) 0x##p##000000 -#if defined(FIXED_TABLES) && (defined(ONE_TABLE) || defined(FOUR_TABLES)) - // data for forward tables (other than last round) #define f_table \ @@ -486,10 +320,6 @@ static const u_int32_t rcon_tab[29] = #undef r #define r r0 -#if defined(ONE_TABLE) -static const u_int32_t ft_tab[256] = - { f_table }; -#elif defined(FOUR_TABLES) static const u_int32_t ft_tab[4][256] = { { f_table }, #undef r @@ -502,14 +332,9 @@ static const u_int32_t ft_tab[4][256] = #define r r3 { f_table } }; -#endif #undef r #define r r0 -#if defined(ONE_TABLE) -static const u_int32_t it_tab[256] = - { i_table }; -#elif defined(FOUR_TABLES) static const u_int32_t it_tab[4][256] = { { i_table }, #undef r @@ -522,13 +347,6 @@ static const u_int32_t it_tab[4][256] = #define r r3 { i_table } }; -#endif - -#endif - -#if defined(FIXED_TABLES) && (defined(ONE_LR_TABLE) || defined(FOUR_LR_TABLES)) - -// data for inverse tables (last round) #define li_table \ w(52), w(09), w(6a), w(d5), w(30), w(36), w(a5), w(38),\ @@ -568,10 +386,6 @@ static const u_int32_t it_tab[4][256] = #undef r #define r(p,q,r,s) w0(q) -#if defined(ONE_LR_TABLE) -static const u_int32_t fl_tab[256] = - { f_table }; -#elif defined(FOUR_LR_TABLES) static const u_int32_t fl_tab[4][256] = { { f_table }, #undef r @@ -584,14 +398,9 @@ static const u_int32_t fl_tab[4][256] = #define r(p,q,r,s) w3(q) { f_table } }; -#endif #undef w #define w w0 -#if defined(ONE_LR_TABLE) -static const u_int32_t il_tab[256] = - { li_table }; -#elif defined(FOUR_LR_TABLES) static const u_int32_t il_tab[4][256] = { { li_table }, #undef w @@ -604,11 +413,6 @@ static const u_int32_t il_tab[4][256] = #define w w3 { li_table } }; -#endif - -#endif - -#if defined(FIXED_TABLES) && (defined(ONE_IM_TABLE) || defined(FOUR_IM_TABLES)) #define m_table \ r(00,00,00,00), r(0b,0d,09,0e), r(16,1a,12,1c), r(1d,17,1b,12),\ @@ -679,10 +483,6 @@ static const u_int32_t il_tab[4][256] = #undef r #define r r0 -#if defined(ONE_IM_TABLE) -static const u_int32_t im_tab[256] = - { m_table }; -#elif defined(FOUR_IM_TABLES) static const u_int32_t im_tab[4][256] = { { m_table }, #undef r @@ -695,212 +495,6 @@ static const u_int32_t im_tab[4][256] = #define r r3 { m_table } }; -#endif - -#endif - -#else - -static int tab_gen = 0; - -static unsigned char s_box[256]; // the S box -static unsigned char inv_s_box[256]; // the inverse S box -static u_int32_t rcon_tab[AES_RC_LENGTH]; // table of round constants - -#if defined(ONE_TABLE) -static u_int32_t ft_tab[256]; -static u_int32_t it_tab[256]; -#elif defined(FOUR_TABLES) -static u_int32_t ft_tab[4][256]; -static u_int32_t it_tab[4][256]; -#endif - -#if defined(ONE_LR_TABLE) -static u_int32_t fl_tab[256]; -static u_int32_t il_tab[256]; -#elif defined(FOUR_LR_TABLES) -static u_int32_t fl_tab[4][256]; -static u_int32_t il_tab[4][256]; -#endif - -#if defined(ONE_IM_TABLE) -static u_int32_t im_tab[256]; -#elif defined(FOUR_IM_TABLES) -static u_int32_t im_tab[4][256]; -#endif - -// Generate the tables for the dynamic table option - -#if !defined(FF_TABLES) - -// It will generally be sensible to use tables to compute finite -// field multiplies and inverses but where memory is scarse this -// code might sometimes be better. - -// return 2 ^ (n - 1) where n is the bit number of the highest bit -// set in x with x in the range 1 < x < 0x00000200. This form is -// used so that locals within FFinv can be bytes rather than words - -static unsigned char hibit(const u_int32_t x) -{ unsigned char r = (unsigned char)((x >> 1) | (x >> 2)); - - r |= (r >> 2); - r |= (r >> 4); - return (r + 1) >> 1; -} - -// return the inverse of the finite field element x - -static unsigned char FFinv(const unsigned char x) -{ unsigned char p1 = x, p2 = 0x1b, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; - - if(x < 2) return x; - - for(;;) - { - if(!n1) return v1; - - while(n2 >= n1) - { - n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2); - } - - if(!n2) return v2; - - while(n1 >= n2) - { - n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1); - } - } -} - -// define the finite field multiplies required for Rijndael - -#define FFmul02(x) ((((x) & 0x7f) << 1) ^ ((x) & 0x80 ? 0x1b : 0)) -#define FFmul03(x) ((x) ^ FFmul02(x)) -#define FFmul09(x) ((x) ^ FFmul02(FFmul02(FFmul02(x)))) -#define FFmul0b(x) ((x) ^ FFmul02((x) ^ FFmul02(FFmul02(x)))) -#define FFmul0d(x) ((x) ^ FFmul02(FFmul02((x) ^ FFmul02(x)))) -#define FFmul0e(x) FFmul02((x) ^ FFmul02((x) ^ FFmul02(x))) - -#else - -#define FFinv(x) ((x) ? pow[255 - log[x]]: 0) - -#define FFmul02(x) (x ? pow[log[x] + 0x19] : 0) -#define FFmul03(x) (x ? pow[log[x] + 0x01] : 0) -#define FFmul09(x) (x ? pow[log[x] + 0xc7] : 0) -#define FFmul0b(x) (x ? pow[log[x] + 0x68] : 0) -#define FFmul0d(x) (x ? pow[log[x] + 0xee] : 0) -#define FFmul0e(x) (x ? pow[log[x] + 0xdf] : 0) - -#endif - -// The forward and inverse affine transformations used in the S-box - -#define fwd_affine(x) \ - (w = (u_int32_t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(unsigned char)(w^(w>>8))) - -#define inv_affine(x) \ - (w = (u_int32_t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(unsigned char)(w^(w>>8))) - -static void gen_tabs(void) -{ u_int32_t i, w; - -#if defined(FF_TABLES) - - unsigned char pow[512], log[256]; - - // log and power tables for GF(2^8) finite field with - // 0x011b as modular polynomial - the simplest primitive - // root is 0x03, used here to generate the tables - - i = 0; w = 1; - do - { - pow[i] = (unsigned char)w; - pow[i + 255] = (unsigned char)w; - log[w] = (unsigned char)i++; - w ^= (w << 1) ^ (w & ff_hi ? ff_poly : 0); - } - while (w != 1); - -#endif - - for(i = 0, w = 1; i < AES_RC_LENGTH; ++i) - { - rcon_tab[i] = bytes2word(w, 0, 0, 0); - w = (w << 1) ^ (w & ff_hi ? ff_poly : 0); - } - - for(i = 0; i < 256; ++i) - { unsigned char b; - - s_box[i] = b = fwd_affine(FFinv((unsigned char)i)); - - w = bytes2word(b, 0, 0, 0); -#if defined(ONE_LR_TABLE) - fl_tab[i] = w; -#elif defined(FOUR_LR_TABLES) - fl_tab[0][i] = w; - fl_tab[1][i] = upr(w,1); - fl_tab[2][i] = upr(w,2); - fl_tab[3][i] = upr(w,3); -#endif - w = bytes2word(FFmul02(b), b, b, FFmul03(b)); -#if defined(ONE_TABLE) - ft_tab[i] = w; -#elif defined(FOUR_TABLES) - ft_tab[0][i] = w; - ft_tab[1][i] = upr(w,1); - ft_tab[2][i] = upr(w,2); - ft_tab[3][i] = upr(w,3); -#endif - inv_s_box[i] = b = FFinv(inv_affine((unsigned char)i)); - - w = bytes2word(b, 0, 0, 0); -#if defined(ONE_LR_TABLE) - il_tab[i] = w; -#elif defined(FOUR_LR_TABLES) - il_tab[0][i] = w; - il_tab[1][i] = upr(w,1); - il_tab[2][i] = upr(w,2); - il_tab[3][i] = upr(w,3); -#endif - w = bytes2word(FFmul0e(b), FFmul09(b), FFmul0d(b), FFmul0b(b)); -#if defined(ONE_TABLE) - it_tab[i] = w; -#elif defined(FOUR_TABLES) - it_tab[0][i] = w; - it_tab[1][i] = upr(w,1); - it_tab[2][i] = upr(w,2); - it_tab[3][i] = upr(w,3); -#endif -#if defined(ONE_IM_TABLE) - im_tab[b] = w; -#elif defined(FOUR_IM_TABLES) - im_tab[0][b] = w; - im_tab[1][b] = upr(w,1); - im_tab[2][b] = upr(w,2); - im_tab[3][b] = upr(w,3); -#endif - - } -} - -#endif - -#define no_table(x,box,vf,rf,c) bytes2word( \ - box[bval(vf(x,0,c),rf(0,c))], \ - box[bval(vf(x,1,c),rf(1,c))], \ - box[bval(vf(x,2,c),rf(2,c))], \ - box[bval(vf(x,3,c),rf(3,c))]) - -#define one_table(x,op,tab,vf,rf,c) \ - ( tab[bval(vf(x,0,c),rf(0,c))] \ - ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ - ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ - ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) #define four_tables(x,tab,vf,rf,c) \ ( tab[0][bval(vf(x,0,c),rf(0,c))] \ @@ -912,23 +506,8 @@ static void gen_tabs(void) #define rf1(r,c) (r) #define rf2(r,c) ((r-c)&3) -#if defined(FOUR_LR_TABLES) #define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) -#elif defined(ONE_LR_TABLE) -#define ls_box(x,c) one_table(x,upr,fl_tab,vf1,rf2,c) -#else -#define ls_box(x,c) no_table(x,s_box,vf1,rf2,c) -#endif - -#if defined(FOUR_IM_TABLES) #define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) -#elif defined(ONE_IM_TABLE) -#define inv_mcol(x) one_table(x,upr,im_tab,vf1,rf1,0) -#else -#define inv_mcol(x) \ - (f9 = (x),f2 = FFmulX(f9), f4 = FFmulX(f2), f8 = FFmulX(f4), f9 ^= f8, \ - f2 ^= f4 ^ f8 ^ upr(f2 ^ f9,3) ^ upr(f4 ^ f9,2) ^ upr(f9,1)) -#endif #define nc (AES_BLOCK_SIZE/4) @@ -954,23 +533,7 @@ static void gen_tabs(void) #define mix(d,s) mx(d,s); mx(d,s); mx(d,s); mx(d,s); \ mx(d,s); mx(d,s); mx(d,s); mx(d,s) #else - -#define cpy(d,s) \ -switch(nc) \ -{ case 8: cp(d,s); cp(d,s); \ - case 6: cp(d,s); cp(d,s); \ - case 4: cp(d,s); cp(d,s); \ - cp(d,s); cp(d,s); \ -} - -#define mix(d,s) \ -switch(nc) \ -{ case 8: mx(d,s); mx(d,s); \ - case 6: mx(d,s); mx(d,s); \ - case 4: mx(d,s); mx(d,s); \ - mx(d,s); mx(d,s); \ -} - +#error bad AES_BLOCK_SIZE #endif // y = output word, x = input word, r = row, c = column @@ -1072,27 +635,10 @@ switch(nc) \ #define si(y,x,k,c) s(y,c) = const_word_in(x + 4 * c) ^ k[c] #define so(y,x,c) word_out(y + 4 * c, s(x,c)) -#if defined(FOUR_TABLES) #define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,ft_tab,fwd_var,rf1,c) #define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,it_tab,inv_var,rf1,c) -#elif defined(ONE_TABLE) -#define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,ft_tab,fwd_var,rf1,c) -#define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,it_tab,inv_var,rf1,c) -#else -#define fwd_rnd(y,x,k,c) s(y,c) = fwd_mcol(no_table(x,s_box,fwd_var,rf1,c)) ^ (k)[c] -#define inv_rnd(y,x,k,c) s(y,c) = inv_mcol(no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c]) -#endif - -#if defined(FOUR_LR_TABLES) #define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,fl_tab,fwd_var,rf1,c) #define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,il_tab,inv_var,rf1,c) -#elif defined(ONE_LR_TABLE) -#define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,fl_tab,fwd_var,rf1,c) -#define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,il_tab,inv_var,rf1,c) -#else -#define fwd_lrnd(y,x,k,c) s(y,c) = no_table(x,s_box,fwd_var,rf1,c) ^ (k)[c] -#define inv_lrnd(y,x,k,c) s(y,c) = no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c] -#endif #if AES_BLOCK_SIZE == 16 @@ -1160,175 +706,83 @@ switch(nc) \ #define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3); \ rm(y,x,k,4); rm(y,x,k,5); rm(y,x,k,6); rm(y,x,k,7) #else - -#define state_in(y,x,k) \ -switch(nc) \ -{ case 8: si(y,x,k,7); si(y,x,k,6); \ - case 6: si(y,x,k,5); si(y,x,k,4); \ - case 4: si(y,x,k,3); si(y,x,k,2); \ - si(y,x,k,1); si(y,x,k,0); \ -} - -#define state_out(y,x) \ -switch(nc) \ -{ case 8: so(y,x,7); so(y,x,6); \ - case 6: so(y,x,5); so(y,x,4); \ - case 4: so(y,x,3); so(y,x,2); \ - so(y,x,1); so(y,x,0); \ -} - -#if defined(FAST_VARIABLE) - -#define round(rm,y,x,k) \ -switch(nc) \ -{ case 8: rm(y,x,k,7); rm(y,x,k,6); \ - rm(y,x,k,5); rm(y,x,k,4); \ - rm(y,x,k,3); rm(y,x,k,2); \ - rm(y,x,k,1); rm(y,x,k,0); \ - break; \ - case 6: rm(y,x,k,5); rm(y,x,k,4); \ - rm(y,x,k,3); rm(y,x,k,2); \ - rm(y,x,k,1); rm(y,x,k,0); \ - break; \ - case 4: rm(y,x,k,3); rm(y,x,k,2); \ - rm(y,x,k,1); rm(y,x,k,0); \ - break; \ -} -#else - -#define round(rm,y,x,k) \ -switch(nc) \ -{ case 8: rm(y,x,k,7); rm(y,x,k,6); \ - case 6: rm(y,x,k,5); rm(y,x,k,4); \ - case 4: rm(y,x,k,3); rm(y,x,k,2); \ - rm(y,x,k,1); rm(y,x,k,0); \ -} - +#error invalid AES_BLOCK_SIZE #endif #endif -#endif /** * Encrypt a single block of data. */ -static void encrypt_block(const private_aes_crypter_t *this, const unsigned char in_blk[], unsigned char out_blk[]) -{ u_int32_t locals(b0, b1); - const u_int32_t *kp = this->aes_e_key; - -#if !defined(ONE_TABLE) && !defined(FOUR_TABLES) - u_int32_t f2; -#endif - - state_in(b0, in_blk, kp); kp += nc; - -#if defined(UNROLL) - - switch(this->aes_Nrnd) - { - case 14: round(fwd_rnd, b1, b0, kp ); - round(fwd_rnd, b0, b1, kp + nc ); kp += 2 * nc; - case 12: round(fwd_rnd, b1, b0, kp ); - round(fwd_rnd, b0, b1, kp + nc ); kp += 2 * nc; - case 10: round(fwd_rnd, b1, b0, kp ); - round(fwd_rnd, b0, b1, kp + nc); - round(fwd_rnd, b1, b0, kp + 2 * nc); - round(fwd_rnd, b0, b1, kp + 3 * nc); - round(fwd_rnd, b1, b0, kp + 4 * nc); - round(fwd_rnd, b0, b1, kp + 5 * nc); - round(fwd_rnd, b1, b0, kp + 6 * nc); - round(fwd_rnd, b0, b1, kp + 7 * nc); - round(fwd_rnd, b1, b0, kp + 8 * nc); - round(fwd_lrnd, b0, b1, kp + 9 * nc); - } - -#elif defined(PARTIAL_UNROLL) - { u_int32_t rnd; - - for(rnd = 0; rnd < (this->aes_Nrnd >> 1) - 1; ++rnd) - { - round(fwd_rnd, b1, b0, kp); - round(fwd_rnd, b0, b1, kp + nc); kp += 2 * nc; - } - - round(fwd_rnd, b1, b0, kp); - round(fwd_lrnd, b0, b1, kp + nc); - } -#else - { u_int32_t rnd; +static void encrypt_block(const private_aes_crypter_t *this, + const unsigned char in_blk[], unsigned char out_blk[]) +{ + u_int32_t locals(b0, b1); + const u_int32_t *kp = this->aes_e_key; - for(rnd = 0; rnd < this->aes_Nrnd - 1; ++rnd) - { - round(fwd_rnd, b1, b0, kp); - l_copy(b0, b1); kp += nc; - } + state_in(b0, in_blk, kp); kp += nc; - round(fwd_lrnd, b0, b1, kp); - } -#endif + switch(this->aes_Nrnd) + { + case 14: + round(fwd_rnd, b1, b0, kp ); + round(fwd_rnd, b0, b1, kp + nc ); kp += 2 * nc; + /* fall */ + case 12: + round(fwd_rnd, b1, b0, kp ); + round(fwd_rnd, b0, b1, kp + nc ); kp += 2 * nc; + /* fall */ + case 10: + round(fwd_rnd, b1, b0, kp ); + round(fwd_rnd, b0, b1, kp + nc); + round(fwd_rnd, b1, b0, kp + 2 * nc); + round(fwd_rnd, b0, b1, kp + 3 * nc); + round(fwd_rnd, b1, b0, kp + 4 * nc); + round(fwd_rnd, b0, b1, kp + 5 * nc); + round(fwd_rnd, b1, b0, kp + 6 * nc); + round(fwd_rnd, b0, b1, kp + 7 * nc); + round(fwd_rnd, b1, b0, kp + 8 * nc); + round(fwd_lrnd, b0, b1, kp + 9 * nc); + } - state_out(out_blk, b0); + state_out(out_blk, b0); } /** * Decrypt a single block of data. */ -static void decrypt_block(const private_aes_crypter_t *this, const unsigned char in_blk[], unsigned char out_blk[]) -{ u_int32_t locals(b0, b1); - const u_int32_t *kp = this->aes_d_key; - -#if !defined(ONE_TABLE) && !defined(FOUR_TABLES) - u_int32_t f2, f4, f8, f9; -#endif - - state_in(b0, in_blk, kp); kp += nc; - -#if defined(UNROLL) - - switch(this->aes_Nrnd) - { - case 14: round(inv_rnd, b1, b0, kp ); - round(inv_rnd, b0, b1, kp + nc ); kp += 2 * nc; - case 12: round(inv_rnd, b1, b0, kp ); - round(inv_rnd, b0, b1, kp + nc ); kp += 2 * nc; - case 10: round(inv_rnd, b1, b0, kp ); - round(inv_rnd, b0, b1, kp + nc); - round(inv_rnd, b1, b0, kp + 2 * nc); - round(inv_rnd, b0, b1, kp + 3 * nc); - round(inv_rnd, b1, b0, kp + 4 * nc); - round(inv_rnd, b0, b1, kp + 5 * nc); - round(inv_rnd, b1, b0, kp + 6 * nc); - round(inv_rnd, b0, b1, kp + 7 * nc); - round(inv_rnd, b1, b0, kp + 8 * nc); - round(inv_lrnd, b0, b1, kp + 9 * nc); - } - -#elif defined(PARTIAL_UNROLL) - { u_int32_t rnd; - - for(rnd = 0; rnd < (this->aes_Nrnd >> 1) - 1; ++rnd) - { - round(inv_rnd, b1, b0, kp); - round(inv_rnd, b0, b1, kp + nc); kp += 2 * nc; - } - - round(inv_rnd, b1, b0, kp); - round(inv_lrnd, b0, b1, kp + nc); - } -#else - { u_int32_t rnd; +static void decrypt_block(const private_aes_crypter_t *this, + const unsigned char in_blk[], unsigned char out_blk[]) +{ + u_int32_t locals(b0, b1); + const u_int32_t *kp = this->aes_d_key; - for(rnd = 0; rnd < this->aes_Nrnd - 1; ++rnd) - { - round(inv_rnd, b1, b0, kp); - l_copy(b0, b1); kp += nc; - } + state_in(b0, in_blk, kp); kp += nc; - round(inv_lrnd, b0, b1, kp); - } -#endif + switch(this->aes_Nrnd) + { + case 14: + round(inv_rnd, b1, b0, kp ); + round(inv_rnd, b0, b1, kp + nc ); kp += 2 * nc; + /* fall */ + case 12: + round(inv_rnd, b1, b0, kp ); + round(inv_rnd, b0, b1, kp + nc ); kp += 2 * nc; + /* fall */ + case 10: + round(inv_rnd, b1, b0, kp ); + round(inv_rnd, b0, b1, kp + nc); + round(inv_rnd, b1, b0, kp + 2 * nc); + round(inv_rnd, b0, b1, kp + 3 * nc); + round(inv_rnd, b1, b0, kp + 4 * nc); + round(inv_rnd, b0, b1, kp + 5 * nc); + round(inv_rnd, b1, b0, kp + 6 * nc); + round(inv_rnd, b0, b1, kp + 7 * nc); + round(inv_rnd, b1, b0, kp + 8 * nc); + round(inv_lrnd, b0, b1, kp + 9 * nc); + } - state_out(out_blk, b0); + state_out(out_blk, b0); } METHOD(crypter_t, decrypt, bool, @@ -1503,14 +957,7 @@ METHOD(crypter_t, set_key, bool, for(i = 1; i < this->aes_Nrnd; ++i) { -#if defined(ONE_TABLE) || defined(FOUR_TABLES) -#if !defined(ONE_IM_TABLE) && !defined(FOUR_IM_TABLES) - u_int32_t f2, f4, f8, f9; -#endif mix(kt, kf); -#else - cpy(kt, kf); -#endif kt -= 2 * nc; } cpy(kt, kf); @@ -1549,10 +996,6 @@ aes_crypter_t *aes_crypter_create(encryption_algorithm_t algo, size_t key_size) return NULL; } - #if !defined(FIXED_TABLES) - if(!tab_gen) { gen_tabs(); tab_gen = 1; } - #endif - INIT(this, .public = { .crypter = { |