diff options
Diffstat (limited to 'src/libstrongswan/plugins/xcbc/xcbc.c')
-rw-r--r-- | src/libstrongswan/plugins/xcbc/xcbc.c | 299 |
1 files changed, 299 insertions, 0 deletions
diff --git a/src/libstrongswan/plugins/xcbc/xcbc.c b/src/libstrongswan/plugins/xcbc/xcbc.c new file mode 100644 index 000000000..ab37eca40 --- /dev/null +++ b/src/libstrongswan/plugins/xcbc/xcbc.c @@ -0,0 +1,299 @@ +/* + * Copyright (C) 2008 Martin Willi + * Hochschule fuer Technik Rapperswil + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General xcbc License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General xcbc License + * for more details. + * + * $Id: xcbc.c 3589 2008-03-13 14:14:44Z martin $ + */ + +#include <string.h> + +#include "xcbc.h" + +#include <debug.h> + +typedef struct private_xcbc_t private_xcbc_t; + +/** + * Private data of a xcbc_t object. + * + * The variable names are the same as in the RFC. + */ +struct private_xcbc_t { + /** + * Public xcbc_t interface. + */ + xcbc_t xcbc; + + /** + * Block size, in bytes + */ + u_int8_t b; + + /** + * crypter using k1 + */ + crypter_t *k1; + + /** + * k2 + */ + u_int8_t *k2; + + /** + * k3 + */ + u_int8_t *k3; + + /** + * E + */ + u_int8_t *e; + + /** + * remaining, unprocessed bytes in append mode + */ + u_int8_t *remaining; + + /** + * number of bytes in remaining + */ + int remaining_bytes; + + /** + * TRUE if we have zero bytes to xcbc in final() + */ + bool zero; +}; + +/** + * xcbc supplied data, but do not run final operation + */ +static void update(private_xcbc_t *this, chunk_t data) +{ + chunk_t iv; + + if (data.len) + { + this->zero = FALSE; + } + + if (this->remaining_bytes + data.len <= this->b) + { /* no complete block, just copy into remaining */ + memcpy(this->remaining + this->remaining_bytes, data.ptr, data.len); + this->remaining_bytes += data.len; + return; + } + + iv = chunk_alloca(this->b); + memset(iv.ptr, 0, iv.len); + + /* (3) For each block M[i], where i = 1 ... n-1: + * XOR M[i] with E[i-1], then encrypt the result with Key K1, + * yielding E[i]. + */ + + /* append data to remaining bytes, process block M[1] */ + memcpy(this->remaining + this->remaining_bytes, data.ptr, + this->b - this->remaining_bytes); + data = chunk_skip(data, this->b - this->remaining_bytes); + memxor(this->e, this->remaining, this->b); + this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); + + /* process blocks M[2] ... M[n-1] */ + while (data.len > this->b) + { + memcpy(this->remaining, data.ptr, this->b); + data = chunk_skip(data, this->b); + memxor(this->e, this->remaining, this->b); + this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); + } + + /* store remaining bytes of block M[n] */ + memcpy(this->remaining, data.ptr, data.len); + this->remaining_bytes = data.len; +} + +/** + * run last round, data is in this->e + */ +static void final(private_xcbc_t *this, u_int8_t *out) +{ + chunk_t iv; + + iv = chunk_alloca(this->b); + memset(iv.ptr, 0, iv.len); + + /* (4) For block M[n]: */ + if (this->remaining_bytes == this->b && !this->zero) + { + /* a) If the blocksize of M[n] is 128 bits: + * XOR M[n] with E[n-1] and Key K2, then encrypt the result with + * Key K1, yielding E[n]. + */ + memxor(this->e, this->remaining, this->b); + memxor(this->e, this->k2, this->b); + this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); + } + else + { + /* b) If the blocksize of M[n] is less than 128 bits: + * + * i) Pad M[n] with a single "1" bit, followed by the number of + * "0" bits (possibly none) required to increase M[n]'s + * blocksize to 128 bits. + */ + if (this->remaining_bytes < this->b) + { + this->remaining[this->remaining_bytes] = 0x80; + while (++this->remaining_bytes < this->b) + { + this->remaining[this->remaining_bytes] = 0x00; + } + } + /* ii) XOR M[n] with E[n-1] and Key K3, then encrypt the result + * with Key K1, yielding E[n]. + */ + memxor(this->e, this->remaining, this->b); + memxor(this->e, this->k3, this->b); + this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); + } + + memcpy(out, this->e, this->b); + + /* (2) Define E[0] = 0x00000000000000000000000000000000 */ + memset(this->e, 0, this->b); + this->remaining_bytes = 0; + this->zero = TRUE; +} + +/** + * Implementation of xcbc_t.get_mac. + */ +static void get_mac(private_xcbc_t *this, chunk_t data, u_int8_t *out) +{ + /* update E, do not process last block */ + update(this, data); + + if (out) + { /* if not in append mode, process last block and output result */ + final(this, out); + } +} + +/** + * Implementation of xcbc_t.get_block_size. + */ +static size_t get_block_size(private_xcbc_t *this) +{ + return this->b; +} + +/** + * Implementation of xcbc_t.set_key. + */ +static void set_key(private_xcbc_t *this, chunk_t key) +{ + chunk_t iv, k1, lengthened; + + /* we support variable keys from RFC4434 */ + if (key.len == this->b) + { + lengthened = key; + } + else if (key.len < this->b) + { /* pad short keys */ + lengthened = chunk_alloca(this->b); + memset(lengthened.ptr, 0, lengthened.len); + memcpy(lengthened.ptr, key.ptr, key.len); + } + else + { /* shorten key using xcbc */ + lengthened = chunk_alloca(this->b); + memset(lengthened.ptr, 0, lengthened.len); + set_key(this, lengthened); + get_mac(this, key, lengthened.ptr); + } + + k1 = chunk_alloca(this->b); + iv = chunk_alloca(this->b); + memset(iv.ptr, 0, iv.len); + + /* + * (1) Derive 3 128-bit keys (K1, K2 and K3) from the 128-bit secret + * key K, as follows: + * K1 = 0x01010101010101010101010101010101 encrypted with Key K + * K2 = 0x02020202020202020202020202020202 encrypted with Key K + * K3 = 0x03030303030303030303030303030303 encrypted with Key K + */ + this->k1->set_key(this->k1, lengthened); + memset(this->k2, 0x02, this->b); + this->k1->encrypt(this->k1, chunk_create(this->k2, this->b), iv, NULL); + memset(this->k3, 0x03, this->b); + this->k1->encrypt(this->k1, chunk_create(this->k3, this->b), iv, NULL); + memset(k1.ptr, 0x01, this->b); + this->k1->encrypt(this->k1, k1, iv, NULL); + this->k1->set_key(this->k1, k1); +} + +/** + * Implementation of xcbc_t.destroy. + */ +static void destroy(private_xcbc_t *this) +{ + this->k1->destroy(this->k1); + free(this->k2); + free(this->k3); + free(this->e); + free(this->remaining); + free(this); +} + +/* + * Described in header + */ +xcbc_t *xcbc_create(encryption_algorithm_t algo, size_t key_size) +{ + private_xcbc_t *this; + crypter_t *crypter; + + crypter = lib->crypto->create_crypter(lib->crypto, algo, key_size); + if (!crypter) + { + return NULL; + } + /* input and output of crypter must be equal for xcbc */ + if (crypter->get_block_size(crypter) != key_size) + { + crypter->destroy(crypter); + return NULL; + } + + this = malloc_thing(private_xcbc_t); + this->xcbc.get_mac = (void (*)(xcbc_t *,chunk_t,u_int8_t*))get_mac; + this->xcbc.get_block_size = (size_t (*)(xcbc_t *))get_block_size; + this->xcbc.set_key = (void (*)(xcbc_t *,chunk_t))set_key; + this->xcbc.destroy = (void (*)(xcbc_t *))destroy; + + this->b = crypter->get_block_size(crypter); + this->k1 = crypter; + this->k2 = malloc(this->b); + this->k3 = malloc(this->b); + this->e = malloc(this->b); + memset(this->e, 0, this->b); + this->remaining = malloc(this->b); + this->remaining_bytes = 0; + this->zero = TRUE; + + return &this->xcbc; +} + |