/* Support of PKCS#1 private key data structures * Copyright (C) 2005 Jan Hutter, Martin Willi * Copyright (C) 2002-2005 Andreas Steffen * Hochschule fuer Technik Rapperswil, Switzerland * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * RCSID $Id: pkcs1.c,v 1.17 2006/01/04 21:00:43 as Exp $ */ #include #include #include #include #include "constants.h" #include "defs.h" #include "mp_defs.h" #include "asn1.h" #include "oid.h" #include "log.h" #include "pkcs1.h" #include "md2.h" #include "md5.h" #include "sha1.h" #include "rnd.h" const struct fld RSA_private_field[] = { { "Modulus", offsetof(RSA_private_key_t, pub.n) }, { "PublicExponent", offsetof(RSA_private_key_t, pub.e) }, { "PrivateExponent", offsetof(RSA_private_key_t, d) }, { "Prime1", offsetof(RSA_private_key_t, p) }, { "Prime2", offsetof(RSA_private_key_t, q) }, { "Exponent1", offsetof(RSA_private_key_t, dP) }, { "Exponent2", offsetof(RSA_private_key_t, dQ) }, { "Coefficient", offsetof(RSA_private_key_t, qInv) }, }; /* ASN.1 definition of a PKCS#1 RSA private key */ static const asn1Object_t privkeyObjects[] = { { 0, "RSAPrivateKey", ASN1_SEQUENCE, ASN1_NONE }, /* 0 */ { 1, "version", ASN1_INTEGER, ASN1_BODY }, /* 1 */ { 1, "modulus", ASN1_INTEGER, ASN1_BODY }, /* 2 */ { 1, "publicExponent", ASN1_INTEGER, ASN1_BODY }, /* 3 */ { 1, "privateExponent", ASN1_INTEGER, ASN1_BODY }, /* 4 */ { 1, "prime1", ASN1_INTEGER, ASN1_BODY }, /* 5 */ { 1, "prime2", ASN1_INTEGER, ASN1_BODY }, /* 6 */ { 1, "exponent1", ASN1_INTEGER, ASN1_BODY }, /* 7 */ { 1, "exponent2", ASN1_INTEGER, ASN1_BODY }, /* 8 */ { 1, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 9 */ { 1, "otherPrimeInfos", ASN1_SEQUENCE, ASN1_OPT | ASN1_LOOP }, /* 10 */ { 2, "otherPrimeInfo", ASN1_SEQUENCE, ASN1_NONE }, /* 11 */ { 3, "prime", ASN1_INTEGER, ASN1_BODY }, /* 12 */ { 3, "exponent", ASN1_INTEGER, ASN1_BODY }, /* 13 */ { 3, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 14 */ { 1, "end opt or loop", ASN1_EOC, ASN1_END } /* 15 */ }; #define PKCS1_PRIV_KEY_VERSION 1 #define PKCS1_PRIV_KEY_MODULUS 2 #define PKCS1_PRIV_KEY_PUB_EXP 3 #define PKCS1_PRIV_KEY_COEFF 9 #define PKCS1_PRIV_KEY_ROOF 16 /* * forms the FreeS/WAN keyid from the public exponent e and modulus n */ void form_keyid(chunk_t e, chunk_t n, char* keyid, unsigned *keysize) { /* eliminate leading zero bytes in modulus from ASN.1 coding */ while (n.len > 1 && *n.ptr == 0x00) { n.ptr++; n.len--; } /* form the FreeS/WAN keyid */ keyid[0] = '\0'; /* in case of splitkeytoid failure */ splitkeytoid(e.ptr, e.len, n.ptr, n.len, keyid, KEYID_BUF); /* return the RSA modulus size in octets */ *keysize = n.len; } /* * initialize an RSA_public_key_t object */ void init_RSA_public_key(RSA_public_key_t *rsa, chunk_t e, chunk_t n) { n_to_mpz(&rsa->e, e.ptr, e.len); n_to_mpz(&rsa->n, n.ptr, n.len); form_keyid(e, n, rsa->keyid, &rsa->k); } #ifdef DEBUG static void RSA_show_key_fields(RSA_private_key_t *k, int fieldcnt) { const struct fld *p; DBG_log(" keyid: *%s", k->pub.keyid); for (p = RSA_private_field; p < &RSA_private_field[fieldcnt]; p++) { MP_INT *n = (MP_INT *) ((char *)k + p->offset); size_t sz = mpz_sizeinbase(n, 16); char buf[RSA_MAX_OCTETS * 2 + 2]; /* ought to be big enough */ passert(sz <= sizeof(buf)); mpz_get_str(buf, 16, n); DBG_log(" %s: 0x%s", p->name, buf); } } /* debugging info that compromises security! */ void RSA_show_private_key(RSA_private_key_t *k) { RSA_show_key_fields(k, elemsof(RSA_private_field)); } void RSA_show_public_key(RSA_public_key_t *k) { /* Kludge: pretend that it is a private key, but only display the * first two fields (which are the public key). */ passert(offsetof(RSA_private_key_t, pub) == 0); RSA_show_key_fields((RSA_private_key_t *)k, 2); } #endif err_t RSA_private_key_sanity(RSA_private_key_t *k) { /* note that the *last* error found is reported */ err_t ugh = NULL; mpz_t t, u, q1; #ifdef DEBUG /* debugging info that compromises security */ DBG(DBG_PRIVATE, RSA_show_private_key(k)); #endif /* PKCS#1 1.5 section 6 requires modulus to have at least 12 octets. * We actually require more (for security). */ if (k->pub.k < RSA_MIN_OCTETS) return RSA_MIN_OCTETS_UGH; /* we picked a max modulus size to simplify buffer allocation */ if (k->pub.k > RSA_MAX_OCTETS) return RSA_MAX_OCTETS_UGH; mpz_init(t); mpz_init(u); mpz_init(q1); /* check that n == p * q */ mpz_mul(u, &k->p, &k->q); if (mpz_cmp(u, &k->pub.n) != 0) ugh = "n != p * q"; /* check that e divides neither p-1 nor q-1 */ mpz_sub_ui(t, &k->p, 1); mpz_mod(t, t, &k->pub.e); if (mpz_cmp_ui(t, 0) == 0) ugh = "e divides p-1"; mpz_sub_ui(t, &k->q, 1); mpz_mod(t, t, &k->pub.e); if (mpz_cmp_ui(t, 0) == 0) ugh = "e divides q-1"; /* check that d is e^-1 (mod lcm(p-1, q-1)) */ /* see PKCS#1v2, aka RFC 2437, for the "lcm" */ mpz_sub_ui(q1, &k->q, 1); mpz_sub_ui(u, &k->p, 1); mpz_gcd(t, u, q1); /* t := gcd(p-1, q-1) */ mpz_mul(u, u, q1); /* u := (p-1) * (q-1) */ mpz_divexact(u, u, t); /* u := lcm(p-1, q-1) */ mpz_mul(t, &k->d, &k->pub.e); mpz_mod(t, t, u); if (mpz_cmp_ui(t, 1) != 0) ugh = "(d * e) mod (lcm(p-1, q-1)) != 1"; /* check that dP is d mod (p-1) */ mpz_sub_ui(u, &k->p, 1); mpz_mod(t, &k->d, u); if (mpz_cmp(t, &k->dP) != 0) ugh = "dP is not congruent to d mod (p-1)"; /* check that dQ is d mod (q-1) */ mpz_sub_ui(u, &k->q, 1); mpz_mod(t, &k->d, u); if (mpz_cmp(t, &k->dQ) != 0) ugh = "dQ is not congruent to d mod (q-1)"; /* check that qInv is (q^-1) mod p */ mpz_mul(t, &k->qInv, &k->q); mpz_mod(t, t, &k->p); if (mpz_cmp_ui(t, 1) != 0) ugh = "qInv is not conguent ot (q^-1) mod p"; mpz_clear(t); mpz_clear(u); mpz_clear(q1); return ugh; } /* * Check the equality of two RSA public keys */ bool same_RSA_public_key(const RSA_public_key_t *a, const RSA_public_key_t *b) { return a == b || (a->k == b->k && mpz_cmp(&a->n, &b->n) == 0 && mpz_cmp(&a->e, &b->e) == 0); } /* * Parses a PKCS#1 private key */ bool pkcs1_parse_private_key(chunk_t blob, RSA_private_key_t *key) { err_t ugh = NULL; asn1_ctx_t ctx; chunk_t object, modulus, exp; u_int level; int objectID = 0; asn1_init(&ctx, blob, 0, FALSE, DBG_PRIVATE); while (objectID < PKCS1_PRIV_KEY_ROOF) { if (!extract_object(privkeyObjects, &objectID, &object, &level, &ctx)) return FALSE; if (objectID == PKCS1_PRIV_KEY_VERSION) { if (object.len > 0 && *object.ptr != 0) { plog(" wrong PKCS#1 private key version"); return FALSE; } } else if (objectID >= PKCS1_PRIV_KEY_MODULUS && objectID <= PKCS1_PRIV_KEY_COEFF) { MP_INT *u = (MP_INT *) ((char *)key + RSA_private_field[objectID - PKCS1_PRIV_KEY_MODULUS].offset); n_to_mpz(u, object.ptr, object.len); if (objectID == PKCS1_PRIV_KEY_MODULUS) modulus = object; else if (objectID == PKCS1_PRIV_KEY_PUB_EXP) exp = object; } objectID++; } form_keyid(exp, modulus, key->pub.keyid, &key->pub.k); ugh = RSA_private_key_sanity(key); return (ugh == NULL); } /* * compute a digest over a binary blob */ bool compute_digest(chunk_t tbs, int alg, chunk_t *digest) { switch (alg) { case OID_MD2: case OID_MD2_WITH_RSA: { MD2_CTX context; MD2Init(&context); MD2Update(&context, tbs.ptr, tbs.len); MD2Final(digest->ptr, &context); digest->len = MD2_DIGEST_SIZE; return TRUE; } case OID_MD5: case OID_MD5_WITH_RSA: { MD5_CTX context; MD5Init(&context); MD5Update(&context, tbs.ptr, tbs.len); MD5Final(digest->ptr, &context); digest->len = MD5_DIGEST_SIZE; return TRUE; } case OID_SHA1: case OID_SHA1_WITH_RSA: case OID_SHA1_WITH_RSA_OIW: { SHA1_CTX context; SHA1Init(&context); SHA1Update(&context, tbs.ptr, tbs.len); SHA1Final(digest->ptr, &context); digest->len = SHA1_DIGEST_SIZE; return TRUE; } default: digest->len = 0; return FALSE; } } /* * compute an RSA signature with PKCS#1 padding */ void sign_hash(const RSA_private_key_t *k, const u_char *hash_val, size_t hash_len , u_char *sig_val, size_t sig_len) { chunk_t ch; mpz_t t1, t2; size_t padlen; u_char *p = sig_val; DBG(DBG_CONTROL | DBG_CRYPT, DBG_log("signing hash with RSA Key *%s", k->pub.keyid) ) /* PKCS#1 v1.5 8.1 encryption-block formatting */ *p++ = 0x00; *p++ = 0x01; /* BT (block type) 01 */ padlen = sig_len - 3 - hash_len; memset(p, 0xFF, padlen); p += padlen; *p++ = 0x00; memcpy(p, hash_val, hash_len); passert(p + hash_len - sig_val == (ptrdiff_t)sig_len); /* PKCS#1 v1.5 8.2 octet-string-to-integer conversion */ n_to_mpz(t1, sig_val, sig_len); /* (could skip leading 0x00) */ /* PKCS#1 v1.5 8.3 RSA computation y = x^c mod n * Better described in PKCS#1 v2.0 5.1 RSADP. * There are two methods, depending on the form of the private key. * We use the one based on the Chinese Remainder Theorem. */ mpz_init(t2); mpz_powm(t2, t1, &k->dP, &k->p); /* m1 = c^dP mod p */ mpz_powm(t1, t1, &k->dQ, &k->q); /* m2 = c^dQ mod Q */ mpz_sub(t2, t2, t1); /* h = qInv (m1 - m2) mod p */ mpz_mod(t2, t2, &k->p); mpz_mul(t2, t2, &k->qInv); mpz_mod(t2, t2, &k->p); mpz_mul(t2, t2, &k->q); /* m = m2 + h q */ mpz_add(t1, t1, t2); /* PKCS#1 v1.5 8.4 integer-to-octet-string conversion */ ch = mpz_to_n(t1, sig_len); memcpy(sig_val, ch.ptr, sig_len); pfree(ch.ptr); mpz_clear(t1); mpz_clear(t2); } /* * encrypt data with an RSA public key after padding */ chunk_t RSA_encrypt(const RSA_public_key_t *key, chunk_t in) { u_char padded[RSA_MAX_OCTETS]; u_char *pos = padded; int padding = key->k - in.len - 3; int i; if (padding < 8 || key->k > RSA_MAX_OCTETS) return empty_chunk; /* add padding according to PKCS#1 7.2.1 1.+2. */ *pos++ = 0x00; *pos++ = 0x02; /* pad with pseudo random bytes unequal to zero */ get_rnd_bytes(pos, padding); for (i = 0; i < padding; i++) { while (!*pos) get_rnd_bytes(pos, 1); pos++; } /* append the padding terminator */ *pos++ = 0x00; /* now add the data */ memcpy(pos, in.ptr, in.len); DBG(DBG_RAW, DBG_dump_chunk("data for rsa encryption:\n", in); DBG_dump("padded data for rsa encryption:\n", padded, key->k) ) /* convert chunk to integer (PKCS#1 7.2.1 3.a) */ { chunk_t out; mpz_t m, c; mpz_init(c); n_to_mpz(m, padded, key->k); /* encrypt(PKCS#1 7.2.1 3.b) */ mpz_powm(c, m, &key->e, &key->n); /* convert integer back to a chunk (PKCS#1 7.2.1 3.c) */ out = mpz_to_n(c, key->k); mpz_clear(c); mpz_clear(m); DBG(DBG_RAW, DBG_dump_chunk("rsa encrypted data:\n", out) ) return out; } } /* * decrypt data with an RSA private key and remove padding */ bool RSA_decrypt(const RSA_private_key_t *key, chunk_t in, chunk_t *out) { chunk_t padded; u_char *pos; mpz_t t1, t2; n_to_mpz(t1, in.ptr,in.len); /* PKCS#1 v1.5 8.3 RSA computation y = x^c mod n * Better described in PKCS#1 v2.0 5.1 RSADP. * There are two methods, depending on the form of the private key. * We use the one based on the Chinese Remainder Theorem. */ mpz_init(t2); mpz_powm(t2, t1, &key->dP, &key->p); /* m1 = c^dP mod p */ mpz_powm(t1, t1, &key->dQ, &key->q); /* m2 = c^dQ mod Q */ mpz_sub(t2, t2, t1); /* h = qInv (m1 - m2) mod p */ mpz_mod(t2, t2, &key->p); mpz_mul(t2, t2, &key->qInv); mpz_mod(t2, t2, &key->p); mpz_mul(t2, t2, &key->q); /* m = m2 + h q */ mpz_add(t1, t1, t2); padded = mpz_to_n(t1, key->pub.k); mpz_clear(t1); mpz_clear(t2); DBG(DBG_PRIVATE, DBG_dump_chunk("rsa decrypted data with padding:\n", padded) ) pos = padded.ptr; /* PKCS#1 v1.5 8.1 encryption-block formatting (EB = 00 || 02 || PS || 00 || D) */ /* check for hex pattern 00 02 in decrypted message */ if ((*pos++ != 0x00) || (*(pos++) != 0x02)) { plog("incorrect padding - probably wrong RSA key"); freeanychunk(padded); return FALSE; } padded.len -= 2; /* the plaintext data starts after first 0x00 byte */ while (padded.len-- > 0 && *pos++ != 0x00) if (padded.len == 0) { plog("no plaintext data"); freeanychunk(padded); return FALSE; } clonetochunk(*out, pos, padded.len, "decrypted data"); freeanychunk(padded); return TRUE; } /* * build signatureValue */ chunk_t pkcs1_build_signature(chunk_t tbs, int hash_alg, const RSA_private_key_t *key , bool bit_string) { size_t siglen = key->pub.k; u_char digest_buf[MAX_DIGEST_LEN]; chunk_t digest = { digest_buf, MAX_DIGEST_LEN }; chunk_t digestInfo, alg_id, signatureValue; u_char *pos; switch (hash_alg) { case OID_MD5: case OID_MD5_WITH_RSA: alg_id = ASN1_md5_id; break; case OID_SHA1: case OID_SHA1_WITH_RSA: alg_id = ASN1_sha1_id; break; default: return empty_chunk; } compute_digest(tbs, hash_alg, &digest); /* according to PKCS#1 v2.1 digest must be packaged into * an ASN.1 structure for encryption */ digestInfo = asn1_wrap(ASN1_SEQUENCE, "cm" , alg_id , asn1_simple_object(ASN1_OCTET_STRING, digest)); /* generate the RSA signature */ if (bit_string) { pos = build_asn1_object(&signatureValue, ASN1_BIT_STRING, 1 + siglen); *pos++ = 0x00; } else { pos = build_asn1_object(&signatureValue, ASN1_OCTET_STRING, siglen); } sign_hash(key, digestInfo.ptr, digestInfo.len, pos, siglen); pfree(digestInfo.ptr); return signatureValue; } /* * build a DER-encoded PKCS#1 private key object */ chunk_t pkcs1_build_private_key(const RSA_private_key_t *key) { chunk_t pkcs1 = asn1_wrap(ASN1_SEQUENCE, "cmmmmmmmm" , ASN1_INTEGER_0 , asn1_integer_from_mpz(&key->pub.n) , asn1_integer_from_mpz(&key->pub.e) , asn1_integer_from_mpz(&key->d) , asn1_integer_from_mpz(&key->p) , asn1_integer_from_mpz(&key->q) , asn1_integer_from_mpz(&key->dP) , asn1_integer_from_mpz(&key->dQ) , asn1_integer_from_mpz(&key->qInv)); DBG(DBG_PRIVATE, DBG_dump_chunk("PKCS#1 encoded private key:", pkcs1) ) return pkcs1; } /* * build a DER-encoded PKCS#1 public key object */ chunk_t pkcs1_build_public_key(const RSA_public_key_t *rsa) { return asn1_wrap(ASN1_SEQUENCE, "mm" , asn1_integer_from_mpz(&rsa->n) , asn1_integer_from_mpz(&rsa->e)); } /* * build a DER-encoded publicKeyInfo object */ chunk_t pkcs1_build_publicKeyInfo(const RSA_public_key_t *rsa) { chunk_t publicKey; chunk_t rawKey = pkcs1_build_public_key(rsa); u_char *pos = build_asn1_object(&publicKey, ASN1_BIT_STRING , 1 + rawKey.len); *pos++ = 0x00; mv_chunk(&pos, rawKey); return asn1_wrap(ASN1_SEQUENCE, "cm" , ASN1_rsaEncryption_id , publicKey); } void free_RSA_public_content(RSA_public_key_t *rsa) { mpz_clear(&rsa->n); mpz_clear(&rsa->e); } void free_RSA_private_content(RSA_private_key_t *rsak) { free_RSA_public_content(&rsak->pub); mpz_clear(&rsak->d); mpz_clear(&rsak->p); mpz_clear(&rsak->q); mpz_clear(&rsak->dP); mpz_clear(&rsak->dQ); mpz_clear(&rsak->qInv); }