/** * @file generator.c * * @brief Implementation of generator_t. * */ /* * Copyright (C) 2005-2006 Martin Willi * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include #include #include "generator.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef struct private_generator_t private_generator_t; /** * Private part of a generator_t object. */ struct private_generator_t { /** * Public part of a generator_t object. */ generator_t public; /** * Generates a U_INT-Field type and writes it to buffer. * * @param this private_generator_t object * @param int_type type of U_INT field (U_INT_4, U_INT_8, etc.) * ATTRIBUTE_TYPE is also generated in this function * @param offset offset of value in data struct * @param generator_contexts generator_contexts_t object where the context is written or read from * @return * - SUCCESS * - FAILED if allignment is wrong */ void (*generate_u_int_type) (private_generator_t *this,encoding_type_t int_type,u_int32_t offset); /** * Get size of current buffer in bytes. * * @param this private_generator_t object * @return Size of buffer in bytes */ size_t (*get_current_buffer_size) (private_generator_t *this); /** * Get free space of current buffer in bytes. * * @param this private_generator_t object * @return space in buffer in bytes */ size_t (*get_current_buffer_space) (private_generator_t *this); /** * Get length of data in buffer (in bytes). * * @param this private_generator_t object * @return length of data in bytes */ size_t (*get_current_data_length) (private_generator_t *this); /** * Get current offset in buffer (in bytes). * * @param this private_generator_t object * @return offset in bytes */ u_int32_t (*get_current_buffer_offset) (private_generator_t *this); /** * Generates a RESERVED BIT field or a RESERVED BYTE field and writes * it to the buffer. * * @param this private_generator_t object * @param generator_contexts generator_contexts_t object where the context is written or read from * @param bits number of bits to generate */ void (*generate_reserved_field) (private_generator_t *this,int bits); /** * Generates a FLAG field. * * @param this private_generator_t object * @param generator_contexts generator_contexts_t object where the context is written or read from * @param offset offset of flag value in data struct */ void (*generate_flag) (private_generator_t *this,u_int32_t offset); /** * Writes the current buffer content into a chunk_t. * * Memory of specific chunk_t gets allocated. * * @param this calling private_generator_t object * @param data pointer of chunk_t to write to */ void (*write_chunk) (private_generator_t *this,chunk_t *data); /** * Generates a bytestream from a chunk_t. * * @param this private_generator_t object * @param offset offset of chunk_t value in data struct */ void (*generate_from_chunk) (private_generator_t *this,u_int32_t offset); /** * Makes sure enough space is available in buffer to store amount of bits. * * If buffer is to small to hold the specific amount of bits it * is increased using reallocation function of allocator. * * @param this calling private_generator_t object * @param bits number of bits to make available in buffer */ void (*make_space_available) (private_generator_t *this,size_t bits); /** * Writes a specific amount of byte into the buffer. * * If buffer is to small to hold the specific amount of bytes it * is increased. * * @param this calling private_generator_t object * @param bytes pointer to bytes to write * @param number_of_bytes number of bytes to write into buffer */ void (*write_bytes_to_buffer) (private_generator_t *this,void * bytes,size_t number_of_bytes); /** * Writes a specific amount of byte into the buffer at a specific offset. * * @warning buffer size is not check to hold the data if offset is to large. * * @param this calling private_generator_t object * @param bytes pointer to bytes to write * @param number_of_bytes number of bytes to write into buffer * @param offset offset to write the data into */ void (*write_bytes_to_buffer_at_offset) (private_generator_t *this,void * bytes,size_t number_of_bytes,u_int32_t offset); /** * Buffer used to generate the data into. */ u_int8_t *buffer; /** * Current write position in buffer (one byte aligned). */ u_int8_t *out_position; /** * Position of last byte in buffer. */ u_int8_t *roof_position; /** * Current bit writing to in current byte (between 0 and 7). */ size_t current_bit; /** * Associated data struct to read informations from. */ void * data_struct; /* * Last payload length position offset in the buffer. */ u_int32_t last_payload_length_position_offset; /** * Offset of the header length field in the buffer. */ u_int32_t header_length_position_offset; /** * Last SPI size. */ u_int8_t last_spi_size; /** * Attribute format of the last generated transform attribute. * * Used to check if a variable value field is used or not for * the transform attribute value. */ bool attribute_format; /** * Depending on the value of attribute_format this field is used * to hold the length of the transform attribute in bytes. */ u_int16_t attribute_length; }; /** * Implementation of private_generator_t.get_current_buffer_size. */ static size_t get_current_buffer_size (private_generator_t *this) { return ((this->roof_position) - (this->buffer)); } /** * Implementation of private_generator_t.get_current_buffer_space. */ static size_t get_current_buffer_space (private_generator_t *this) { /* we know, one byte more */ size_t space = (this->roof_position) - (this->out_position); return (space); } /** * Implementation of private_generator_t.get_current_data_length. */ static size_t get_current_data_length (private_generator_t *this) { return (this->out_position - this->buffer); } /** * Implementation of private_generator_t.get_current_buffer_offset. */ static u_int32_t get_current_buffer_offset (private_generator_t *this) { return (this->out_position - this->buffer); } /** * Implementation of private_generator_t.generate_u_int_type. */ static void generate_u_int_type (private_generator_t *this,encoding_type_t int_type,u_int32_t offset) { size_t number_of_bits = 0; /* find out number of bits of each U_INT type to check for enough space in buffer */ switch (int_type) { case U_INT_4: number_of_bits = 4; break; case TS_TYPE: case U_INT_8: number_of_bits = 8; break; case U_INT_16: case CONFIGURATION_ATTRIBUTE_LENGTH: number_of_bits = 16; break; case U_INT_32: number_of_bits = 32; break; case U_INT_64: number_of_bits = 64; break; case ATTRIBUTE_TYPE: number_of_bits = 15; break; case IKE_SPI: number_of_bits = 64; break; default: DBG1(DBG_ENC, "U_INT Type %N is not supported", encoding_type_names, int_type); return; } /* U_INT Types of multiple then 8 bits must be aligned */ if (((number_of_bits % 8) == 0) && (this->current_bit != 0)) { DBG1(DBG_ENC, "U_INT Type %N is not 8 Bit aligned", encoding_type_names, int_type); /* current bit has to be zero for values multiple of 8 bits */ return; } /* make sure enough space is available in buffer */ this->make_space_available(this,number_of_bits); /* now handle each u int type differently */ switch (int_type) { case U_INT_4: { if (this->current_bit == 0) { /* highval of current byte in buffer has to be set to the new value*/ u_int8_t high_val = *((u_int8_t *)(this->data_struct + offset)) << 4; /* lowval in buffer is not changed */ u_int8_t low_val = *(this->out_position) & 0x0F; /* highval is set, low_val is not changed */ *(this->out_position) = high_val | low_val; DBG3(DBG_ENC, " => %d", *(this->out_position)); /* write position is not changed, just bit position is moved */ this->current_bit = 4; } else if (this->current_bit == 4) { /* highval in buffer is not changed */ u_int high_val = *(this->out_position) & 0xF0; /* lowval of current byte in buffer has to be set to the new value*/ u_int low_val = *((u_int8_t *)(this->data_struct + offset)) & 0x0F; *(this->out_position) = high_val | low_val; DBG3(DBG_ENC, " => %d", *(this->out_position)); this->out_position++; this->current_bit = 0; } else { DBG1(DBG_ENC, "U_INT_4 Type is not 4 Bit aligned"); /* 4 Bit integers must have a 4 bit alignment */ return; }; break; } case TS_TYPE: case U_INT_8: { /* 8 bit values are written as they are */ *this->out_position = *((u_int8_t *)(this->data_struct + offset)); DBG3(DBG_ENC, " => %d", *(this->out_position)); this->out_position++; break; } case ATTRIBUTE_TYPE: { /* attribute type must not change first bit uf current byte ! */ if (this->current_bit != 1) { DBG1(DBG_ENC, "ATTRIBUTE FORMAT flag is not set"); /* first bit has to be set! */ return; } /* get value of attribute format flag */ u_int8_t attribute_format_flag = *(this->out_position) & 0x80; /* get attribute type value as 16 bit integer*/ u_int16_t int16_val = *((u_int16_t*)(this->data_struct + offset)); /* unset most significant bit */ int16_val &= 0x7FFF; if (attribute_format_flag) { int16_val |= 0x8000; } int16_val = htons(int16_val); DBG3(DBG_ENC, " => %d", int16_val); /* write bytes to buffer (set bit is overwritten)*/ this->write_bytes_to_buffer(this,&int16_val,sizeof(u_int16_t)); this->current_bit = 0; break; } case U_INT_16: case CONFIGURATION_ATTRIBUTE_LENGTH: { u_int16_t int16_val = htons(*((u_int16_t*)(this->data_struct + offset))); DBG3(DBG_ENC, " => %b", (void*)&int16_val, sizeof(int16_val)); this->write_bytes_to_buffer(this,&int16_val,sizeof(u_int16_t)); break; } case U_INT_32: { u_int32_t int32_val = htonl(*((u_int32_t*)(this->data_struct + offset))); DBG3(DBG_ENC, " => %b", (void*)&int32_val, sizeof(int32_val)); this->write_bytes_to_buffer(this,&int32_val,sizeof(u_int32_t)); break; } case U_INT_64: { /* 64 bit integers are written as two 32 bit integers */ u_int32_t int32_val_low = htonl(*((u_int32_t*)(this->data_struct + offset))); u_int32_t int32_val_high = htonl(*((u_int32_t*)(this->data_struct + offset) + 1)); DBG3(DBG_ENC, " => %b %b", (void*)&int32_val_low, sizeof(int32_val_low), (void*)&int32_val_high, sizeof(int32_val_high)); /* TODO add support for big endian machines */ this->write_bytes_to_buffer(this,&int32_val_high,sizeof(u_int32_t)); this->write_bytes_to_buffer(this,&int32_val_low,sizeof(u_int32_t)); break; } case IKE_SPI: { /* 64 bit are written as they come :-) */ this->write_bytes_to_buffer(this,(this->data_struct + offset),sizeof(u_int64_t)); DBG3(DBG_ENC, " => %b", (void*)(this->data_struct + offset), sizeof(u_int64_t)); break; } default: { DBG1(DBG_ENC, "U_INT Type %N is not supported", encoding_type_names, int_type); return; } } } /** * Implementation of private_generator_t.generate_reserved_field. */ static void generate_reserved_field(private_generator_t *this,int bits) { /* only one bit or 8 bit fields are supported */ if ((bits != 1) && (bits != 8)) { DBG1(DBG_ENC, "reserved field of %d bits cannot be generated", bits); return ; } /* make sure enough space is available in buffer */ this->make_space_available(this,bits); if (bits == 1) { /* one bit processing */ u_int8_t reserved_bit = ~(1 << (7 - this->current_bit)); *(this->out_position) = *(this->out_position) & reserved_bit; if (this->current_bit == 0) { /* memory must be zero */ *(this->out_position) = 0x00; } this->current_bit++; if (this->current_bit >= 8) { this->current_bit = this->current_bit % 8; this->out_position++; } } else { /* one byte processing*/ if (this->current_bit > 0) { DBG1(DBG_ENC, "reserved field cannot be written cause " "alignement of current bit is %d", this->current_bit); return; } *(this->out_position) = 0x00; this->out_position++; } } /** * Implementation of private_generator_t.generate_flag. */ static void generate_flag (private_generator_t *this,u_int32_t offset) { /* value of current flag */ u_int8_t flag_value; /* position of flag in current byte */ u_int8_t flag; /* if the value in the data_struct is TRUE, flag_value is set to 1, 0 otherwise */ flag_value = (*((bool *) (this->data_struct + offset))) ? 1 : 0; /* get flag position */ flag = (flag_value << (7 - this->current_bit)); /* make sure one bit is available in buffer */ this->make_space_available(this,1); if (this->current_bit == 0) { /* memory must be zero */ *(this->out_position) = 0x00; } *(this->out_position) = *(this->out_position) | flag; DBG3(DBG_ENC, " => %d", *(this->out_position)); this->current_bit++; if (this->current_bit >= 8) { this->current_bit = this->current_bit % 8; this->out_position++; } } /** * Implementation of private_generator_t.generate_from_chunk. */ static void generate_from_chunk (private_generator_t *this,u_int32_t offset) { if (this->current_bit != 0) { DBG1(DBG_ENC, "can not generate a chunk at Bitpos %d", this->current_bit); return ; } /* position in buffer */ chunk_t *attribute_value = (chunk_t *)(this->data_struct + offset); DBG3(DBG_ENC, " => %B", attribute_value); /* use write_bytes_to_buffer function to do the job */ this->write_bytes_to_buffer(this,attribute_value->ptr,attribute_value->len); } /** * Implementation of private_generator_t.make_space_available. */ static void make_space_available (private_generator_t *this, size_t bits) { while (((this->get_current_buffer_space(this) * 8) - this->current_bit) < bits) { /* must increase buffer */ size_t old_buffer_size = this->get_current_buffer_size(this); size_t new_buffer_size = old_buffer_size + GENERATOR_DATA_BUFFER_INCREASE_VALUE; size_t out_position_offset = ((this->out_position) - (this->buffer)); DBG2(DBG_ENC, "increased gen buffer from %d to %d byte", old_buffer_size, new_buffer_size); /* Reallocate space for new buffer */ this->buffer = realloc(this->buffer,new_buffer_size); this->out_position = (this->buffer + out_position_offset); this->roof_position = (this->buffer + new_buffer_size); } } /** * Implementation of private_generator_t.write_bytes_to_buffer. */ static void write_bytes_to_buffer (private_generator_t *this,void * bytes, size_t number_of_bytes) { int i; u_int8_t *read_position = (u_int8_t *) bytes; this->make_space_available(this,number_of_bytes * 8); for (i = 0; i < number_of_bytes; i++) { *(this->out_position) = *(read_position); read_position++; this->out_position++; } } /** * Implementation of private_generator_t.write_bytes_to_buffer_at_offset. */ static void write_bytes_to_buffer_at_offset (private_generator_t *this,void * bytes,size_t number_of_bytes,u_int32_t offset) { int i; u_int8_t *read_position = (u_int8_t *) bytes; u_int8_t *write_position; u_int32_t free_space_after_offset = (this->get_current_buffer_size(this) - offset); /* check first if enough space for new data is available */ if (number_of_bytes > free_space_after_offset) { this->make_space_available(this,(number_of_bytes - free_space_after_offset) * 8); } write_position = this->buffer + offset; for (i = 0; i < number_of_bytes; i++) { *(write_position) = *(read_position); read_position++; write_position++; } } /** * Implementation of private_generator_t.write_to_chunk. */ static void write_to_chunk (private_generator_t *this,chunk_t *data) { size_t data_length = this->get_current_data_length(this); u_int32_t header_length_field = data_length; /* write length into header length field */ if (this->header_length_position_offset > 0) { u_int32_t int32_val = htonl(header_length_field); this->write_bytes_to_buffer_at_offset(this,&int32_val,sizeof(u_int32_t),this->header_length_position_offset); } if (this->current_bit > 0) data_length++; data->ptr = malloc(data_length); memcpy(data->ptr,this->buffer,data_length); data->len = data_length; DBG3(DBG_ENC, "generated data of this generator %B", data); } /** * Implementation of private_generator_t.generate_payload. */ static void generate_payload (private_generator_t *this,payload_t *payload) { int i; this->data_struct = payload; size_t rule_count; encoding_rule_t *rules; payload_type_t payload_type; u_int8_t *payload_start; /* get payload type */ payload_type = payload->get_type(payload); /* spi size has to get reseted */ this->last_spi_size = 0; payload_start = this->out_position; DBG2(DBG_ENC, "generating payload of type %N", payload_type_names, payload_type); /* each payload has its own encoding rules */ payload->get_encoding_rules(payload,&rules,&rule_count); for (i = 0; i < rule_count;i++) { DBG2(DBG_ENC, " generating rule %d %N", i, encoding_type_names, rules[i].type); switch (rules[i].type) { /* all u int values, IKE_SPI,TS_TYPE and ATTRIBUTE_TYPE are generated in generate_u_int_type */ case U_INT_4: case U_INT_8: case U_INT_16: case U_INT_32: case U_INT_64: case IKE_SPI: case TS_TYPE: case ATTRIBUTE_TYPE: case CONFIGURATION_ATTRIBUTE_LENGTH: { this->generate_u_int_type(this,rules[i].type,rules[i].offset); break; } case RESERVED_BIT: { this->generate_reserved_field(this,1); break; } case RESERVED_BYTE: { this->generate_reserved_field(this,8); break; } case FLAG: { this->generate_flag(this,rules[i].offset); break; } case PAYLOAD_LENGTH: { /* position of payload lenght field is temporary stored */ this->last_payload_length_position_offset = this->get_current_buffer_offset(this); /* payload length is generated like an U_INT_16 */ this->generate_u_int_type(this,U_INT_16,rules[i].offset); break; } case HEADER_LENGTH: { /* position of header length field is temporary stored */ this->header_length_position_offset = this->get_current_buffer_offset(this); /* header length is generated like an U_INT_32 */ this->generate_u_int_type(this,U_INT_32,rules[i].offset); break; } case SPI_SIZE: /* spi size is handled as 8 bit unsigned integer */ this->generate_u_int_type(this,U_INT_8,rules[i].offset); /* last spi size is temporary stored */ this->last_spi_size = *((u_int8_t *)(this->data_struct + rules[i].offset)); break; case ADDRESS: { /* the Address value is generated from chunk */ this->generate_from_chunk(this,rules[i].offset); break; } case SPI: { /* the SPI value is generated from chunk */ this->generate_from_chunk(this,rules[i].offset); break; } case KEY_EXCHANGE_DATA: case NOTIFICATION_DATA: case NONCE_DATA: case ID_DATA: case AUTH_DATA: case CERT_DATA: case CERTREQ_DATA: case SPIS: case CONFIGURATION_ATTRIBUTE_VALUE: case VID_DATA: case EAP_DATA: { u_int32_t payload_length_position_offset; u_int16_t length_of_payload; u_int16_t header_length = 0; u_int16_t length_in_network_order; switch(rules[i].type) { case KEY_EXCHANGE_DATA: header_length = KE_PAYLOAD_HEADER_LENGTH; break; case NOTIFICATION_DATA: header_length = NOTIFY_PAYLOAD_HEADER_LENGTH + this->last_spi_size ; break; case NONCE_DATA: header_length = NONCE_PAYLOAD_HEADER_LENGTH; break; case ID_DATA: header_length = ID_PAYLOAD_HEADER_LENGTH; break; case AUTH_DATA: header_length = AUTH_PAYLOAD_HEADER_LENGTH; break; case CERT_DATA: header_length = CERT_PAYLOAD_HEADER_LENGTH; break; case CERTREQ_DATA: header_length = CERTREQ_PAYLOAD_HEADER_LENGTH; break; case SPIS: header_length = DELETE_PAYLOAD_HEADER_LENGTH; break; case VID_DATA: header_length = VENDOR_ID_PAYLOAD_HEADER_LENGTH; break; case CONFIGURATION_ATTRIBUTE_VALUE: header_length = CONFIGURATION_ATTRIBUTE_HEADER_LENGTH; break; case EAP_DATA: header_length = EAP_PAYLOAD_HEADER_LENGTH; break; default: break; } /* the data value is generated from chunk */ this->generate_from_chunk(this,rules[i].offset); payload_length_position_offset = this->last_payload_length_position_offset; /* Length of payload is calculated */ length_of_payload = header_length + ((chunk_t *)(this->data_struct + rules[i].offset))->len; length_in_network_order = htons(length_of_payload); this->write_bytes_to_buffer_at_offset(this,&length_in_network_order,sizeof(u_int16_t),payload_length_position_offset); break; } case PROPOSALS: { /* before iterative generate the transforms, store the current payload length position */ u_int32_t payload_length_position_offset = this->last_payload_length_position_offset; /* Length of SA_PAYLOAD is calculated */ u_int16_t length_of_sa_payload = SA_PAYLOAD_HEADER_LENGTH; u_int16_t int16_val; /* proposals are stored in a linked list and so accessed */ linked_list_t *proposals = *((linked_list_t **)(this->data_struct + rules[i].offset)); iterator_t *iterator; payload_t *current_proposal; /* create forward iterator */ iterator = proposals->create_iterator(proposals,TRUE); /* every proposal is processed (iterative call )*/ while (iterator->iterate(iterator, (void**)¤t_proposal)) { u_int32_t before_generate_position_offset; u_int32_t after_generate_position_offset; before_generate_position_offset = this->get_current_buffer_offset(this); this->public.generate_payload(&(this->public),current_proposal); after_generate_position_offset = this->get_current_buffer_offset(this); /* increase size of transform */ length_of_sa_payload += (after_generate_position_offset - before_generate_position_offset); } iterator->destroy(iterator); int16_val = htons(length_of_sa_payload); this->write_bytes_to_buffer_at_offset(this,&int16_val,sizeof(u_int16_t),payload_length_position_offset); break; } case TRANSFORMS: { /* before iterative generate the transforms, store the current length position */ u_int32_t payload_length_position_offset = this->last_payload_length_position_offset; u_int16_t length_of_proposal = PROPOSAL_SUBSTRUCTURE_HEADER_LENGTH + this->last_spi_size; u_int16_t int16_val; linked_list_t *transforms = *((linked_list_t **)(this->data_struct + rules[i].offset)); iterator_t *iterator; payload_t *current_transform; /* create forward iterator */ iterator = transforms->create_iterator(transforms,TRUE); while (iterator->iterate(iterator, (void**)¤t_transform)) { u_int32_t before_generate_position_offset; u_int32_t after_generate_position_offset; before_generate_position_offset = this->get_current_buffer_offset(this); this->public.generate_payload(&(this->public),current_transform); after_generate_position_offset = this->get_current_buffer_offset(this); /* increase size of transform */ length_of_proposal += (after_generate_position_offset - before_generate_position_offset); } iterator->destroy(iterator); int16_val = htons(length_of_proposal); this->write_bytes_to_buffer_at_offset(this,&int16_val,sizeof(u_int16_t),payload_length_position_offset); break; } case TRANSFORM_ATTRIBUTES: { /* before iterative generate the transform attributes, store the current length position */ u_int32_t transform_length_position_offset = this->last_payload_length_position_offset; u_int16_t length_of_transform = TRANSFORM_SUBSTRUCTURE_HEADER_LENGTH; u_int16_t int16_val; linked_list_t *transform_attributes =*((linked_list_t **)(this->data_struct + rules[i].offset)); iterator_t *iterator; payload_t *current_attribute; /* create forward iterator */ iterator = transform_attributes->create_iterator(transform_attributes,TRUE); while (iterator->iterate(iterator, (void**)¤t_attribute)) { u_int32_t before_generate_position_offset; u_int32_t after_generate_position_offset; before_generate_position_offset = this->get_current_buffer_offset(this); this->public.generate_payload(&(this->public),current_attribute); after_generate_position_offset = this->get_current_buffer_offset(this); /* increase size of transform */ length_of_transform += (after_generate_position_offset - before_generate_position_offset); } iterator->destroy(iterator); int16_val = htons(length_of_transform); this->write_bytes_to_buffer_at_offset(this,&int16_val,sizeof(u_int16_t),transform_length_position_offset); break; } case CONFIGURATION_ATTRIBUTES: { /* before iterative generate the configuration attributes, store the current length position */ u_int32_t configurations_length_position_offset = this->last_payload_length_position_offset; u_int16_t length_of_configurations = CP_PAYLOAD_HEADER_LENGTH; u_int16_t int16_val; linked_list_t *configuration_attributes =*((linked_list_t **)(this->data_struct + rules[i].offset)); iterator_t *iterator; payload_t *current_attribute; /* create forward iterator */ iterator = configuration_attributes->create_iterator(configuration_attributes,TRUE); while (iterator->iterate(iterator, (void**)¤t_attribute)) { u_int32_t before_generate_position_offset; u_int32_t after_generate_position_offset; before_generate_position_offset = this->get_current_buffer_offset(this); this->public.generate_payload(&(this->public),current_attribute); after_generate_position_offset = this->get_current_buffer_offset(this); /* increase size of transform */ length_of_configurations += (after_generate_position_offset - before_generate_position_offset); } iterator->destroy(iterator); int16_val = htons(length_of_configurations); this->write_bytes_to_buffer_at_offset(this,&int16_val,sizeof(u_int16_t),configurations_length_position_offset); break; } case ATTRIBUTE_FORMAT: { this->generate_flag(this,rules[i].offset); /* Attribute format is a flag which is stored in context*/ this->attribute_format = *((bool *) (this->data_struct + rules[i].offset)); break; } case ATTRIBUTE_LENGTH_OR_VALUE: { if (this->attribute_format == FALSE) { this->generate_u_int_type(this,U_INT_16,rules[i].offset); /* this field hold the length of the attribute */ this->attribute_length = *((u_int16_t *)(this->data_struct + rules[i].offset)); } else { this->generate_u_int_type(this,U_INT_16,rules[i].offset); } break; } case ATTRIBUTE_VALUE: { if (this->attribute_format == FALSE) { DBG2(DBG_ENC, "attribute value has not fixed size"); /* the attribute value is generated */ this->generate_from_chunk(this,rules[i].offset); } break; } case TRAFFIC_SELECTORS: { /* before iterative generate the traffic_selectors, store the current payload length position */ u_int32_t payload_length_position_offset = this->last_payload_length_position_offset; /* Length of SA_PAYLOAD is calculated */ u_int16_t length_of_ts_payload = TS_PAYLOAD_HEADER_LENGTH; u_int16_t int16_val; /* traffic selectors are stored in a linked list and so accessed */ linked_list_t *traffic_selectors = *((linked_list_t **)(this->data_struct + rules[i].offset)); iterator_t *iterator; payload_t *current_traffic_selector_substructure; /* create forward iterator */ iterator = traffic_selectors->create_iterator(traffic_selectors,TRUE); /* every proposal is processed (iterative call )*/ while (iterator->iterate(iterator, (void **)¤t_traffic_selector_substructure)) { u_int32_t before_generate_position_offset; u_int32_t after_generate_position_offset; before_generate_position_offset = this->get_current_buffer_offset(this); this->public.generate_payload(&(this->public),current_traffic_selector_substructure); after_generate_position_offset = this->get_current_buffer_offset(this); /* increase size of transform */ length_of_ts_payload += (after_generate_position_offset - before_generate_position_offset); } iterator->destroy(iterator); int16_val = htons(length_of_ts_payload); this->write_bytes_to_buffer_at_offset(this,&int16_val,sizeof(u_int16_t),payload_length_position_offset); break; } case ENCRYPTED_DATA: { this->generate_from_chunk(this, rules[i].offset); break; } default: DBG1(DBG_ENC, "field type %N is not supported", encoding_type_names, rules[i].type); return; } } DBG2(DBG_ENC, "generating %N payload finished", payload_type_names, payload_type); DBG3(DBG_ENC, "generated data for this payload %b", payload_start, this->out_position-payload_start); } /** * Implementation of generator_t.destroy. */ static status_t destroy(private_generator_t *this) { free(this->buffer); free(this); return SUCCESS; } /* * Described in header */ generator_t *generator_create() { private_generator_t *this; this = malloc_thing(private_generator_t); /* initiate public functions */ this->public.generate_payload = (void(*)(generator_t*, payload_t *)) generate_payload; this->public.destroy = (void(*)(generator_t*)) destroy; this->public.write_to_chunk = (void (*) (generator_t *,chunk_t *)) write_to_chunk; /* initiate private functions */ this->get_current_buffer_size = get_current_buffer_size; this->get_current_buffer_space = get_current_buffer_space; this->get_current_data_length = get_current_data_length; this->get_current_buffer_offset = get_current_buffer_offset; this->generate_u_int_type = generate_u_int_type; this->generate_reserved_field = generate_reserved_field; this->generate_flag = generate_flag; this->generate_from_chunk = generate_from_chunk; this->make_space_available = make_space_available; this->write_bytes_to_buffer = write_bytes_to_buffer; this->write_bytes_to_buffer_at_offset = write_bytes_to_buffer_at_offset; /* allocate memory for buffer */ this->buffer = malloc(GENERATOR_DATA_BUFFER_SIZE); /* initiate private variables */ this->out_position = this->buffer; this->roof_position = this->buffer + GENERATOR_DATA_BUFFER_SIZE; this->data_struct = NULL; this->current_bit = 0; this->last_payload_length_position_offset = 0; this->header_length_position_offset = 0; return &(this->public); }