/* * Copyright (C) 2006-2009 Tobias Brunner * Copyright (C) 2006 Daniel Roethlisberger * Copyright (C) 2005-2007 Martin Willi * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ /* for struct in6_pktinfo */ #define _GNU_SOURCE #ifdef __sun #define _XPG4_2 #define __EXTENSIONS__ #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __APPLE__ #include #endif #include "socket.h" #include /* length of non-esp marker */ #define MARKER_LEN sizeof(u_int32_t) /* from linux/udp.h */ #ifndef UDP_ENCAP #define UDP_ENCAP 100 #endif /*UDP_ENCAP*/ #ifndef UDP_ENCAP_ESPINUDP #define UDP_ENCAP_ESPINUDP 2 #endif /*UDP_ENCAP_ESPINUDP*/ /* these are not defined on some platforms */ #ifndef SOL_IP #define SOL_IP IPPROTO_IP #endif #ifndef SOL_IPV6 #define SOL_IPV6 IPPROTO_IPV6 #endif #ifndef SOL_UDP #define SOL_UDP IPPROTO_UDP #endif /* IPV6_RECVPKTINFO is defined in RFC 3542 which obsoletes RFC 2292 that * previously defined IPV6_PKTINFO */ #ifndef IPV6_RECVPKTINFO #define IPV6_RECVPKTINFO IPV6_PKTINFO; #endif typedef struct private_socket_t private_socket_t; /** * Private data of an socket_t object */ struct private_socket_t { /** * public functions */ socket_t public; /** * IPv4 socket (500) */ int ipv4; /** * IPv4 socket for NATT (4500) */ int ipv4_natt; /** * IPv6 socket (500) */ int ipv6; /** * IPv6 socket for NATT (4500) */ int ipv6_natt; }; /** * implementation of socket_t.receive */ static status_t receiver(private_socket_t *this, packet_t **packet) { char buffer[MAX_PACKET]; chunk_t data; packet_t *pkt; host_t *source = NULL, *dest = NULL; int bytes_read = 0; int data_offset, oldstate; fd_set rfds; int max_fd = 0, selected = 0; u_int16_t port = 0; FD_ZERO(&rfds); if (this->ipv4) { FD_SET(this->ipv4, &rfds); } if (this->ipv4_natt) { FD_SET(this->ipv4_natt, &rfds); } if (this->ipv6) { FD_SET(this->ipv6, &rfds); } if (this->ipv6_natt) { FD_SET(this->ipv6_natt, &rfds); } max_fd = max(max(this->ipv4, this->ipv4_natt), max(this->ipv6, this->ipv6_natt)); DBG2(DBG_NET, "waiting for data on sockets"); pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate); if (select(max_fd + 1, &rfds, NULL, NULL, NULL) <= 0) { pthread_setcancelstate(oldstate, NULL); return FAILED; } pthread_setcancelstate(oldstate, NULL); if (FD_ISSET(this->ipv4, &rfds)) { port = IKEV2_UDP_PORT; selected = this->ipv4; } if (FD_ISSET(this->ipv4_natt, &rfds)) { port = IKEV2_NATT_PORT; selected = this->ipv4_natt; } if (FD_ISSET(this->ipv6, &rfds)) { port = IKEV2_UDP_PORT; selected = this->ipv6; } if (FD_ISSET(this->ipv6_natt, &rfds)) { port = IKEV2_NATT_PORT; selected = this->ipv6_natt; } if (selected) { struct msghdr msg; struct cmsghdr *cmsgptr; struct iovec iov; char ancillary[64]; union { struct sockaddr_in in4; struct sockaddr_in6 in6; } src; msg.msg_name = &src; msg.msg_namelen = sizeof(src); iov.iov_base = buffer; iov.iov_len = sizeof(buffer); msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = ancillary; msg.msg_controllen = sizeof(ancillary); msg.msg_flags = 0; bytes_read = recvmsg(selected, &msg, 0); if (bytes_read < 0) { DBG1(DBG_NET, "error reading socket: %s", strerror(errno)); return FAILED; } DBG3(DBG_NET, "received packet %b", buffer, bytes_read); if (bytes_read < MARKER_LEN) { DBG3(DBG_NET, "received packet too short (%d bytes)", bytes_read); return FAILED; } /* read ancillary data to get destination address */ for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL; cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) { if (cmsgptr->cmsg_len == 0) { DBG1(DBG_NET, "error reading ancillary data"); return FAILED; } if (cmsgptr->cmsg_level == SOL_IPV6 && cmsgptr->cmsg_type == IPV6_PKTINFO) { struct in6_pktinfo *pktinfo; pktinfo = (struct in6_pktinfo*)CMSG_DATA(cmsgptr); struct sockaddr_in6 dst; memset(&dst, 0, sizeof(dst)); memcpy(&dst.sin6_addr, &pktinfo->ipi6_addr, sizeof(dst.sin6_addr)); dst.sin6_family = AF_INET6; dst.sin6_port = htons(port); dest = host_create_from_sockaddr((sockaddr_t*)&dst); } if (cmsgptr->cmsg_level == SOL_IP && #ifdef IP_PKTINFO cmsgptr->cmsg_type == IP_PKTINFO #elif defined(IP_RECVDSTADDR) cmsgptr->cmsg_type == IP_RECVDSTADDR #else FALSE #endif ) { struct in_addr *addr; struct sockaddr_in dst; #ifdef IP_PKTINFO struct in_pktinfo *pktinfo; pktinfo = (struct in_pktinfo*)CMSG_DATA(cmsgptr); addr = &pktinfo->ipi_addr; #elif defined(IP_RECVDSTADDR) addr = (struct in_addr*)CMSG_DATA(cmsgptr); #endif memset(&dst, 0, sizeof(dst)); memcpy(&dst.sin_addr, addr, sizeof(dst.sin_addr)); dst.sin_family = AF_INET; dst.sin_port = htons(port); dest = host_create_from_sockaddr((sockaddr_t*)&dst); } if (dest) { break; } } if (dest == NULL) { DBG1(DBG_NET, "error reading IP header"); return FAILED; } source = host_create_from_sockaddr((sockaddr_t*)&src); pkt = packet_create(); pkt->set_source(pkt, source); pkt->set_destination(pkt, dest); DBG2(DBG_NET, "received packet: from %#H to %#H", source, dest); data_offset = 0; /* remove non esp marker */ if (dest->get_port(dest) == IKEV2_NATT_PORT) { data_offset += MARKER_LEN; } /* fill in packet */ data.len = bytes_read - data_offset; data.ptr = malloc(data.len); memcpy(data.ptr, buffer + data_offset, data.len); pkt->set_data(pkt, data); } else { /* oops, shouldn't happen */ return FAILED; } /* return packet */ *packet = pkt; return SUCCESS; } /** * implementation of socket_t.send */ status_t sender(private_socket_t *this, packet_t *packet) { int sport, skt, family; ssize_t bytes_sent; chunk_t data, marked; host_t *src, *dst; struct msghdr msg; struct cmsghdr *cmsg; struct iovec iov; src = packet->get_source(packet); dst = packet->get_destination(packet); data = packet->get_data(packet); DBG2(DBG_NET, "sending packet: from %#H to %#H", src, dst); /* send data */ sport = src->get_port(src); family = dst->get_family(dst); if (sport == IKEV2_UDP_PORT) { if (family == AF_INET) { skt = this->ipv4; } else { skt = this->ipv6; } } else if (sport == IKEV2_NATT_PORT) { if (family == AF_INET) { skt = this->ipv4_natt; } else { skt = this->ipv6_natt; } /* NAT keepalives without marker */ if (data.len != 1 || data.ptr[0] != 0xFF) { /* add non esp marker to packet */ if (data.len > MAX_PACKET - MARKER_LEN) { DBG1(DBG_NET, "unable to send packet: it's too big (%d bytes)", data.len); return FAILED; } marked = chunk_alloc(data.len + MARKER_LEN); memset(marked.ptr, 0, MARKER_LEN); memcpy(marked.ptr + MARKER_LEN, data.ptr, data.len); /* let the packet do the clean up for us */ packet->set_data(packet, marked); data = marked; } } else { DBG1(DBG_NET, "unable to locate a send socket for port %d", sport); return FAILED; } memset(&msg, 0, sizeof(struct msghdr)); msg.msg_name = dst->get_sockaddr(dst);; msg.msg_namelen = *dst->get_sockaddr_len(dst); iov.iov_base = data.ptr; iov.iov_len = data.len; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_flags = 0; if (!src->is_anyaddr(src)) { if (family == AF_INET) { #if defined(IP_PKTINFO) || defined(IP_SENDSRCADDR) struct in_addr *addr; struct sockaddr_in *sin; #ifdef IP_PKTINFO char buf[CMSG_SPACE(sizeof(struct in_pktinfo))]; struct in_pktinfo *pktinfo; #elif defined(IP_SENDSRCADDR) char buf[CMSG_SPACE(sizeof(struct in_addr))]; #endif msg.msg_control = buf; msg.msg_controllen = sizeof(buf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_IP; #ifdef IP_PKTINFO cmsg->cmsg_type = IP_PKTINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo)); pktinfo = (struct in_pktinfo*)CMSG_DATA(cmsg); memset(pktinfo, 0, sizeof(struct in_pktinfo)); addr = &pktinfo->ipi_spec_dst; #elif defined(IP_SENDSRCADDR) cmsg->cmsg_type = IP_SENDSRCADDR; cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr)); addr = (struct in_addr*)CMSG_DATA(cmsg); #endif sin = (struct sockaddr_in*)src->get_sockaddr(src); memcpy(addr, &sin->sin_addr, sizeof(struct in_addr)); #endif /* IP_PKTINFO || IP_SENDSRCADDR */ } else { char buf[CMSG_SPACE(sizeof(struct in6_pktinfo))]; struct in6_pktinfo *pktinfo; struct sockaddr_in6 *sin; msg.msg_control = buf; msg.msg_controllen = sizeof(buf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo)); pktinfo = (struct in6_pktinfo*)CMSG_DATA(cmsg); memset(pktinfo, 0, sizeof(struct in6_pktinfo)); sin = (struct sockaddr_in6*)src->get_sockaddr(src); memcpy(&pktinfo->ipi6_addr, &sin->sin6_addr, sizeof(struct in6_addr)); } } bytes_sent = sendmsg(skt, &msg, 0); if (bytes_sent != data.len) { DBG1(DBG_NET, "error writing to socket: %s", strerror(errno)); return FAILED; } return SUCCESS; } /** * open a socket to send and receive packets */ static int open_socket(private_socket_t *this, int family, u_int16_t port) { int on = TRUE; struct sockaddr_storage addr; socklen_t addrlen; u_int sol, pktinfo = 0; int skt; memset(&addr, 0, sizeof(addr)); /* precalculate constants depending on address family */ switch (family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)&addr; sin->sin_family = AF_INET; sin->sin_addr.s_addr = INADDR_ANY; sin->sin_port = htons(port); addrlen = sizeof(struct sockaddr_in); sol = SOL_IP; #ifdef IP_PKTINFO pktinfo = IP_PKTINFO; #elif defined(IP_RECVDSTADDR) pktinfo = IP_RECVDSTADDR; #endif break; } case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&addr; sin6->sin6_family = AF_INET6; memcpy(&sin6->sin6_addr, &in6addr_any, sizeof(in6addr_any)); sin6->sin6_port = htons(port); addrlen = sizeof(struct sockaddr_in6); sol = SOL_IPV6; pktinfo = IPV6_RECVPKTINFO; break; } default: return 0; } skt = socket(family, SOCK_DGRAM, IPPROTO_UDP); if (skt < 0) { DBG1(DBG_NET, "could not open socket: %s", strerror(errno)); return 0; } if (setsockopt(skt, SOL_SOCKET, SO_REUSEADDR, (void*)&on, sizeof(on)) < 0) { DBG1(DBG_NET, "unable to set SO_REUSEADDR on socket: %s", strerror(errno)); close(skt); return 0; } /* bind the socket */ if (bind(skt, (struct sockaddr *)&addr, addrlen) < 0) { DBG1(DBG_NET, "unable to bind socket: %s", strerror(errno)); close(skt); return 0; } /* get additional packet info on receive */ if (pktinfo > 0) { if (setsockopt(skt, sol, pktinfo, &on, sizeof(on)) < 0) { DBG1(DBG_NET, "unable to set IP_PKTINFO on socket: %s", strerror(errno)); close(skt); return 0; } } #ifndef __APPLE__ { /* enable UDP decapsulation globally, only for one socket needed */ int type = UDP_ENCAP_ESPINUDP; if (family == AF_INET && port == IKEV2_NATT_PORT && setsockopt(skt, SOL_UDP, UDP_ENCAP, &type, sizeof(type)) < 0) { DBG1(DBG_NET, "unable to set UDP_ENCAP: %s", strerror(errno)); } } #endif return skt; } /** * enumerator for underlying sockets */ typedef struct { /** implements enumerator_t */ enumerator_t public; /** sockets we enumerate */ private_socket_t *socket; /** counter */ int index; } socket_enumerator_t; /** * enumerate function for socket_enumerator_t */ static bool enumerate(socket_enumerator_t *this, int *fd, int *family, int *port) { static const struct { int fd_offset; int family; int port; } sockets[] = { { offsetof(private_socket_t, ipv4), AF_INET, IKEV2_UDP_PORT }, { offsetof(private_socket_t, ipv6), AF_INET6, IKEV2_UDP_PORT }, { offsetof(private_socket_t, ipv4_natt), AF_INET, IKEV2_NATT_PORT }, { offsetof(private_socket_t, ipv6_natt), AF_INET6, IKEV2_NATT_PORT } }; while(++this->index < countof(sockets)) { int sock = *(int*)((char*)this->socket + sockets[this->index].fd_offset); if (!sock) { continue; } *fd = sock; *family = sockets[this->index].family; *port = sockets[this->index].port; return TRUE; } return FALSE; } /** * implementation of socket_t.create_enumerator */ static enumerator_t *create_enumerator(private_socket_t *this) { socket_enumerator_t *enumerator; enumerator = malloc_thing(socket_enumerator_t); enumerator->index = -1; enumerator->socket = this; enumerator->public.enumerate = (void*)enumerate; enumerator->public.destroy = (void*)free; return &enumerator->public; } /** * implementation of socket_t.destroy */ static void destroy(private_socket_t *this) { if (this->ipv4) { close(this->ipv4); } if (this->ipv4_natt) { close(this->ipv4_natt); } if (this->ipv6) { close(this->ipv6); } if (this->ipv6_natt) { close(this->ipv6_natt); } free(this); } /* * See header for description */ socket_t *socket_create() { private_socket_t *this = malloc_thing(private_socket_t); /* public functions */ this->public.send = (status_t(*)(socket_t*, packet_t*))sender; this->public.receive = (status_t(*)(socket_t*, packet_t**))receiver; this->public.create_enumerator = (enumerator_t*(*)(socket_t*))create_enumerator; this->public.destroy = (void(*)(socket_t*)) destroy; this->ipv4 = 0; this->ipv6 = 0; this->ipv4_natt = 0; this->ipv6_natt = 0; #ifdef __APPLE__ { int natt_port = IKEV2_NATT_PORT; if (sysctlbyname("net.inet.ipsec.esp_port", NULL, NULL, &natt_port, sizeof(natt_port)) != 0) { DBG1(DBG_NET, "could not set net.inet.ipsec.esp_port to %d: %s", natt_port, strerror(errno)); } } #endif this->ipv4 = open_socket(this, AF_INET, IKEV2_UDP_PORT); if (this->ipv4 == 0) { DBG1(DBG_NET, "could not open IPv4 socket, IPv4 disabled"); } else { this->ipv4_natt = open_socket(this, AF_INET, IKEV2_NATT_PORT); if (this->ipv4_natt == 0) { DBG1(DBG_NET, "could not open IPv4 NAT-T socket"); } } this->ipv6 = open_socket(this, AF_INET6, IKEV2_UDP_PORT); if (this->ipv6 == 0) { DBG1(DBG_NET, "could not open IPv6 socket, IPv6 disabled"); } else { this->ipv6_natt = open_socket(this, AF_INET6, IKEV2_NATT_PORT); if (this->ipv6_natt == 0) { DBG1(DBG_NET, "could not open IPv6 NAT-T socket"); } } if (!this->ipv4 && !this->ipv6) { DBG1(DBG_NET, "could not create any sockets"); destroy(this); charon->kill(charon, "socket initialization failed"); } return (socket_t*)this; }