/** * @file ike_sa.c * * @brief Implementation of ike_sa_t. * */ /* * Copyright (C) 2006 Tobias Brunner, Daniel Roethlisberger * Copyright (C) 2005-2006 Martin Willi * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include #include #include #include "ike_sa.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef RESOLV_CONF #define RESOLV_CONF "/etc/resolv.conf" #endif ENUM(ike_sa_state_names, IKE_CREATED, IKE_DELETING, "CREATED", "CONNECTING", "ESTABLISHED", "REKEYING", "DELETING", ); typedef struct private_ike_sa_t private_ike_sa_t; /** * Private data of an ike_sa_t object. */ struct private_ike_sa_t { /** * Public members */ ike_sa_t public; /** * Identifier for the current IKE_SA. */ ike_sa_id_t *ike_sa_id; /** * unique numerical ID for this IKE_SA. */ u_int32_t unique_id; /** * Current state of the IKE_SA */ ike_sa_state_t state; /** * IKE configuration used to set up this IKE_SA */ ike_cfg_t *ike_cfg; /** * Peer and authentication information to establish IKE_SA. */ peer_cfg_t *peer_cfg; /** * Juggles tasks to process messages */ task_manager_t *task_manager; /** * Address of local host */ host_t *my_host; /** * Address of remote host */ host_t *other_host; /** * Identification used for us */ identification_t *my_id; /** * Identification used for other */ identification_t *other_id; /** * CA that issued the certificate of other */ ca_info_t *other_ca; /** * Linked List containing the child sa's of the current IKE_SA. */ linked_list_t *child_sas; /** * crypter for inbound traffic */ crypter_t *crypter_in; /** * crypter for outbound traffic */ crypter_t *crypter_out; /** * Signer for inbound traffic */ signer_t *signer_in; /** * Signer for outbound traffic */ signer_t *signer_out; /** * Multi purpose prf, set key, use it, forget it */ prf_t *prf; /** * Prf function for derivating keymat child SAs */ prf_t *child_prf; /** * Key to build outging authentication data (SKp) */ chunk_t skp_build; /** * Key to verify incoming authentication data (SKp) */ chunk_t skp_verify; /** * NAT status of local host. */ bool nat_here; /** * NAT status of remote host. */ bool nat_there; /** * Virtual IP on local host, if any */ host_t *my_virtual_ip; /** * Virtual IP on remote host, if any */ host_t *other_virtual_ip; /** * List of DNS servers installed by us */ linked_list_t *dns_servers; /** * Timestamps for this IKE_SA */ struct { /** last IKE message received */ u_int32_t inbound; /** last IKE message sent */ u_int32_t outbound; /** when IKE_SA became established */ u_int32_t established; /** when IKE_SA gets rekeyed */ u_int32_t rekey; /** when IKE_SA gets deleted */ u_int32_t delete; } time; /** * how many times we have retried so far (keyingtries) */ u_int32_t keyingtry; }; /** * get the time of the latest traffic processed by the kernel */ static time_t get_use_time(private_ike_sa_t* this, bool inbound) { iterator_t *iterator; child_sa_t *child_sa; time_t latest = 0, use_time; iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)&child_sa)) { if (child_sa->get_use_time(child_sa, inbound, &use_time) == SUCCESS) { latest = max(latest, use_time); } } iterator->destroy(iterator); if (inbound) { return max(this->time.inbound, latest); } else { return max(this->time.outbound, latest); } } /** * Implementation of ike_sa_t.get_unique_id */ static u_int32_t get_unique_id(private_ike_sa_t *this) { return this->unique_id; } /** * Implementation of ike_sa_t.get_name. */ static char *get_name(private_ike_sa_t *this) { if (this->peer_cfg) { return this->peer_cfg->get_name(this->peer_cfg); } return "(unnamed)"; } /** * Implementation of ike_sa_t.get_stats. */ static void get_stats(private_ike_sa_t *this, u_int32_t *next_rekeying) { if (next_rekeying) { *next_rekeying = this->time.rekey; } } /** * Implementation of ike_sa_t.get_my_host. */ static host_t *get_my_host(private_ike_sa_t *this) { return this->my_host; } /** * Implementation of ike_sa_t.set_my_host. */ static void set_my_host(private_ike_sa_t *this, host_t *me) { DESTROY_IF(this->my_host); this->my_host = me; } /** * Implementation of ike_sa_t.get_other_host. */ static host_t *get_other_host(private_ike_sa_t *this) { return this->other_host; } /** * Implementation of ike_sa_t.set_other_host. */ static void set_other_host(private_ike_sa_t *this, host_t *other) { DESTROY_IF(this->other_host); this->other_host = other; } /** * Implementation of ike_sa_t.get_peer_cfg */ static peer_cfg_t* get_peer_cfg(private_ike_sa_t *this) { return this->peer_cfg; } /** * Implementation of ike_sa_t.set_peer_cfg */ static void set_peer_cfg(private_ike_sa_t *this, peer_cfg_t *peer_cfg) { peer_cfg->get_ref(peer_cfg); this->peer_cfg = peer_cfg; if (this->ike_cfg == NULL) { this->ike_cfg = peer_cfg->get_ike_cfg(peer_cfg); this->ike_cfg->get_ref(this->ike_cfg); } /* apply values, so we are ready to initate/acquire */ if (this->my_host->is_anyaddr(this->my_host)) { host_t *me = this->ike_cfg->get_my_host(this->ike_cfg); set_my_host(this, me->clone(me)); } if (this->other_host->is_anyaddr(this->other_host)) { host_t *other = this->ike_cfg->get_other_host(this->ike_cfg); set_other_host(this, other->clone(other)); } /* apply IDs if they are not already set */ if (this->my_id->contains_wildcards(this->my_id)) { identification_t *my_id = this->peer_cfg->get_my_id(this->peer_cfg); DESTROY_IF(this->my_id); this->my_id = my_id->clone(my_id); } if (this->other_id->contains_wildcards(this->other_id)) { identification_t *other_id = this->peer_cfg->get_other_id(this->peer_cfg); DESTROY_IF(this->other_id); this->other_id = other_id->clone(other_id); } } /** * Implementation of ike_sa_t.get_ike_cfg */ static ike_cfg_t *get_ike_cfg(private_ike_sa_t *this) { return this->ike_cfg; } /** * Implementation of ike_sa_t.set_ike_cfg */ static void set_ike_cfg(private_ike_sa_t *this, ike_cfg_t *ike_cfg) { ike_cfg->get_ref(ike_cfg); this->ike_cfg = ike_cfg; } /** * Implementation of ike_sa_t.send_dpd */ static status_t send_dpd(private_ike_sa_t *this) { send_dpd_job_t *job; time_t diff, delay; delay = this->peer_cfg->get_dpd_delay(this->peer_cfg); if (delay == 0) { /* DPD disabled */ return SUCCESS; } if (this->task_manager->busy(this->task_manager)) { /* an exchange is in the air, no need to start a DPD check */ diff = 0; } else { /* check if there was any inbound traffic */ time_t last_in, now; last_in = get_use_time(this, TRUE); now = time(NULL); diff = now - last_in; if (diff >= delay) { /* to long ago, initiate dead peer detection */ task_t *task; task = (task_t*)ike_dpd_create(TRUE); diff = 0; DBG1(DBG_IKE, "sending DPD request"); this->task_manager->queue_task(this->task_manager, task); this->task_manager->initiate(this->task_manager); } } /* recheck in "interval" seconds */ job = send_dpd_job_create(this->ike_sa_id); charon->event_queue->add_relative(charon->event_queue, (job_t*)job, (delay - diff) * 1000); return SUCCESS; } /** * Implementation of ike_sa_t.send_keepalive */ static void send_keepalive(private_ike_sa_t *this) { send_keepalive_job_t *job; time_t last_out, now, diff; last_out = get_use_time(this, FALSE); now = time(NULL); diff = now - last_out; if (diff >= KEEPALIVE_INTERVAL) { packet_t *packet; chunk_t data; packet = packet_create(); packet->set_source(packet, this->my_host->clone(this->my_host)); packet->set_destination(packet, this->other_host->clone(this->other_host)); data.ptr = malloc(1); data.ptr[0] = 0xFF; data.len = 1; packet->set_data(packet, data); charon->sender->send(charon->sender, packet); DBG1(DBG_IKE, "sending keep alive"); diff = 0; } job = send_keepalive_job_create(this->ike_sa_id); charon->event_queue->add_relative(charon->event_queue, (job_t*)job, (KEEPALIVE_INTERVAL - diff) * 1000); } /** * Implementation of ike_sa_t.get_state. */ static ike_sa_state_t get_state(private_ike_sa_t *this) { return this->state; } /** * Implementation of ike_sa_t.set_state. */ static void set_state(private_ike_sa_t *this, ike_sa_state_t state) { DBG1(DBG_IKE, "IKE_SA state change: %N => %N", ike_sa_state_names, this->state, ike_sa_state_names, state); switch (state) { case IKE_ESTABLISHED: { if (this->state == IKE_CONNECTING) { job_t *job; u_int32_t now = time(NULL); u_int32_t soft, hard; bool reauth; this->time.established = now; /* start DPD checks */ send_dpd(this); /* schedule rekeying/reauthentication */ soft = this->peer_cfg->get_lifetime(this->peer_cfg, TRUE); hard = this->peer_cfg->get_lifetime(this->peer_cfg, FALSE); reauth = this->peer_cfg->use_reauth(this->peer_cfg); DBG1(DBG_IKE, "scheduling %s in %ds, maximum lifetime %ds", reauth ? "reauthentication": "rekeying", soft, hard); if (soft) { this->time.rekey = now + soft; job = (job_t*)rekey_ike_sa_job_create(this->ike_sa_id, reauth); charon->event_queue->add_relative(charon->event_queue, job, soft * 1000); } if (hard) { this->time.delete = now + hard; job = (job_t*)delete_ike_sa_job_create(this->ike_sa_id, TRUE); charon->event_queue->add_relative(charon->event_queue, job, hard * 1000); } } break; } case IKE_DELETING: { /* delete may fail if a packet gets lost, so set a timeout */ job_t *job = (job_t*)delete_ike_sa_job_create(this->ike_sa_id, TRUE); charon->event_queue->add_relative(charon->event_queue, job, HALF_OPEN_IKE_SA_TIMEOUT); break; } default: break; } this->state = state; } /** * Implementation of ike_sa_t.reset */ static void reset(private_ike_sa_t *this) { /* the responder ID is reset, as peer may choose another one */ if (this->ike_sa_id->is_initiator(this->ike_sa_id)) { this->ike_sa_id->set_responder_spi(this->ike_sa_id, 0); } set_state(this, IKE_CREATED); this->task_manager->reset(this->task_manager); } /** * Update hosts, as addresses may change (NAT) */ static void update_hosts(private_ike_sa_t *this, host_t *me, host_t *other) { iterator_t *iterator = NULL; child_sa_t *child_sa = NULL; host_diff_t my_diff, other_diff; if (this->my_host->is_anyaddr(this->my_host) || this->other_host->is_anyaddr(this->other_host)) { /* on first received message */ this->my_host->destroy(this->my_host); this->my_host = me->clone(me); this->other_host->destroy(this->other_host); this->other_host = other->clone(other); return; } my_diff = me->get_differences(me, this->my_host); other_diff = other->get_differences(other, this->other_host); if (!my_diff && !other_diff) { return; } if (my_diff) { this->my_host->destroy(this->my_host); this->my_host = me->clone(me); } if (!this->nat_here) { /* update without restrictions if we are not NATted */ if (other_diff) { this->other_host->destroy(this->other_host); this->other_host = other->clone(other); } } else { /* if we are natted, only port may change */ if (other_diff & HOST_DIFF_ADDR) { return; } else if (other_diff & HOST_DIFF_PORT) { this->other_host->set_port(this->other_host, other->get_port(other)); } } iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)&child_sa)) { child_sa->update_hosts(child_sa, this->my_host, this->other_host, my_diff, other_diff); } iterator->destroy(iterator); } /** * Implementation of ike_sa_t.generate */ static status_t generate_message(private_ike_sa_t *this, message_t *message, packet_t **packet) { this->time.outbound = time(NULL); message->set_ike_sa_id(message, this->ike_sa_id); message->set_destination(message, this->other_host->clone(this->other_host)); message->set_source(message, this->my_host->clone(this->my_host)); return message->generate(message, this->crypter_out, this->signer_out, packet); } /** * send a notify back to the sender */ static void send_notify_response(private_ike_sa_t *this, message_t *request, notify_type_t type) { message_t *response; packet_t *packet; response = message_create(); response->set_exchange_type(response, request->get_exchange_type(request)); response->set_request(response, FALSE); response->set_message_id(response, request->get_message_id(request)); response->add_notify(response, FALSE, type, chunk_empty); if (this->my_host->is_anyaddr(this->my_host)) { this->my_host->destroy(this->my_host); this->my_host = request->get_destination(request); this->my_host = this->my_host->clone(this->my_host); } if (this->other_host->is_anyaddr(this->other_host)) { this->other_host->destroy(this->other_host); this->other_host = request->get_source(request); this->other_host = this->other_host->clone(this->other_host); } if (generate_message(this, response, &packet) == SUCCESS) { charon->sender->send(charon->sender, packet); } response->destroy(response); } /** * Implementation of ike_sa_t.process_message. */ static status_t process_message(private_ike_sa_t *this, message_t *message) { status_t status; bool is_request; is_request = message->get_request(message); status = message->parse_body(message, this->crypter_in, this->signer_in); if (status != SUCCESS) { if (is_request) { switch (status) { case NOT_SUPPORTED: DBG1(DBG_IKE, "ciritcal unknown payloads found"); if (is_request) { send_notify_response(this, message, UNSUPPORTED_CRITICAL_PAYLOAD); } break; case PARSE_ERROR: DBG1(DBG_IKE, "message parsing failed"); if (is_request) { send_notify_response(this, message, INVALID_SYNTAX); } break; case VERIFY_ERROR: DBG1(DBG_IKE, "message verification failed"); if (is_request) { send_notify_response(this, message, INVALID_SYNTAX); } break; case FAILED: DBG1(DBG_IKE, "integrity check failed"); /* ignored */ break; case INVALID_STATE: DBG1(DBG_IKE, "found encrypted message, but no keys available"); if (is_request) { send_notify_response(this, message, INVALID_SYNTAX); } default: break; } } DBG1(DBG_IKE, "%N %s with message ID %d processing failed", exchange_type_names, message->get_exchange_type(message), message->get_request(message) ? "request" : "response", message->get_message_id(message)); return status; } else { host_t *me, *other; me = message->get_destination(message); other = message->get_source(message); /* if this IKE_SA is virgin, we check for a config */ if (this->ike_cfg == NULL) { job_t *job; this->ike_cfg = charon->backends->get_ike_cfg(charon->backends, me, other); if (this->ike_cfg == NULL) { /* no config found for these hosts, destroy */ DBG1(DBG_IKE, "no IKE config found for %H...%H, sending %N", me, other, notify_type_names, NO_PROPOSAL_CHOSEN); send_notify_response(this, message, NO_PROPOSAL_CHOSEN); return DESTROY_ME; } /* add a timeout if peer does not establish it completely */ job = (job_t*)delete_ike_sa_job_create(this->ike_sa_id, FALSE); charon->event_queue->add_relative(charon->event_queue, job, HALF_OPEN_IKE_SA_TIMEOUT); } /* check if message is trustworthy, and update host information */ if (this->state == IKE_CREATED || message->get_exchange_type(message) != IKE_SA_INIT) { update_hosts(this, me, other); this->time.inbound = time(NULL); } return this->task_manager->process_message(this->task_manager, message); } } /** * Implementation of ike_sa_t.initiate. */ static status_t initiate(private_ike_sa_t *this, child_cfg_t *child_cfg) { task_t *task; if (this->state == IKE_CREATED) { if (this->other_host->is_anyaddr(this->other_host)) { SIG(IKE_UP_START, "initiating IKE_SA"); SIG(IKE_UP_FAILED, "unable to initiate to %%any"); return DESTROY_ME; } task = (task_t*)ike_init_create(&this->public, TRUE, NULL); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_natd_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_cert_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_auth_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_config_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); } task = (task_t*)child_create_create(&this->public, child_cfg); child_cfg->destroy(child_cfg); this->task_manager->queue_task(this->task_manager, task); return this->task_manager->initiate(this->task_manager); } /** * Implementation of ike_sa_t.acquire. */ static status_t acquire(private_ike_sa_t *this, u_int32_t reqid) { child_cfg_t *child_cfg; iterator_t *iterator; child_sa_t *current, *child_sa = NULL; task_t *task; child_create_t *child_create; if (this->state == IKE_DELETING) { SIG(CHILD_UP_START, "acquiring CHILD_SA on kernel request"); SIG(CHILD_UP_FAILED, "acquiring CHILD_SA (reqid %d) failed: " "IKE_SA is deleting", reqid); return FAILED; } /* find CHILD_SA */ iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)¤t)) { if (current->get_reqid(current) == reqid) { child_sa = current; break; } } iterator->destroy(iterator); if (!child_sa) { SIG(CHILD_UP_START, "acquiring CHILD_SA on kernel request"); SIG(CHILD_UP_FAILED, "acquiring CHILD_SA (reqid %d) failed: " "CHILD_SA not found", reqid); return FAILED; } if (this->state == IKE_CREATED) { task = (task_t*)ike_init_create(&this->public, TRUE, NULL); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_natd_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_cert_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_auth_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); task = (task_t*)ike_config_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, task); } child_cfg = child_sa->get_config(child_sa); child_create = child_create_create(&this->public, child_cfg); child_create->use_reqid(child_create, reqid); this->task_manager->queue_task(this->task_manager, (task_t*)child_create); return this->task_manager->initiate(this->task_manager); } /** * Implementation of ike_sa_t.route. */ static status_t route(private_ike_sa_t *this, child_cfg_t *child_cfg) { child_sa_t *child_sa; iterator_t *iterator; linked_list_t *my_ts, *other_ts; status_t status; SIG(CHILD_ROUTE_START, "routing CHILD_SA"); /* check if not already routed*/ iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)&child_sa)) { if (child_sa->get_state(child_sa) == CHILD_ROUTED && streq(child_sa->get_name(child_sa), child_cfg->get_name(child_cfg))) { iterator->destroy(iterator); SIG(CHILD_ROUTE_FAILED, "CHILD_SA with such a config already routed"); return FAILED; } } iterator->destroy(iterator); switch (this->state) { case IKE_DELETING: case IKE_REKEYING: SIG(CHILD_ROUTE_FAILED, "unable to route CHILD_SA, as its IKE_SA gets deleted"); return FAILED; case IKE_CREATED: case IKE_CONNECTING: case IKE_ESTABLISHED: default: break; } /* install kernel policies */ child_sa = child_sa_create(this->my_host, this->other_host, this->my_id, this->other_id, child_cfg, FALSE, 0); my_ts = child_cfg->get_traffic_selectors(child_cfg, TRUE, NULL, this->my_host); other_ts = child_cfg->get_traffic_selectors(child_cfg, FALSE, NULL, this->other_host); status = child_sa->add_policies(child_sa, my_ts, other_ts, child_cfg->get_mode(child_cfg)); my_ts->destroy_offset(my_ts, offsetof(traffic_selector_t, destroy)); other_ts->destroy_offset(other_ts, offsetof(traffic_selector_t, destroy)); if (status == SUCCESS) { this->child_sas->insert_last(this->child_sas, child_sa); SIG(CHILD_ROUTE_SUCCESS, "CHILD_SA routed"); } else { SIG(CHILD_ROUTE_FAILED, "routing CHILD_SA failed"); } return status; } /** * Implementation of ike_sa_t.unroute. */ static status_t unroute(private_ike_sa_t *this, u_int32_t reqid) { iterator_t *iterator; child_sa_t *child_sa; bool found = FALSE; SIG(CHILD_UNROUTE_START, "unrouting CHILD_SA"); /* find CHILD_SA in ROUTED state */ iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)&child_sa)) { if (child_sa->get_state(child_sa) == CHILD_ROUTED && child_sa->get_reqid(child_sa) == reqid) { iterator->remove(iterator); SIG(CHILD_UNROUTE_SUCCESS, "CHILD_SA unrouted"); child_sa->destroy(child_sa); found = TRUE; break; } } iterator->destroy(iterator); if (!found) { SIG(CHILD_UNROUTE_FAILED, "CHILD_SA to unroute not found"); return FAILED; } /* if we are not established, and we have no more routed childs, remove whole SA */ if (this->state == IKE_CREATED && this->child_sas->get_count(this->child_sas) == 0) { return DESTROY_ME; } return SUCCESS; } /** * Implementation of ike_sa_t.retransmit. */ static status_t retransmit(private_ike_sa_t *this, u_int32_t message_id) { this->time.outbound = time(NULL); if (this->task_manager->retransmit(this->task_manager, message_id) != SUCCESS) { child_cfg_t *child_cfg; child_sa_t* child_sa; linked_list_t *to_route, *to_restart; iterator_t *iterator; /* send a proper signal to brief interested bus listeners */ switch (this->state) { case IKE_CONNECTING: { /* retry IKE_SA_INIT if we have multiple keyingtries */ u_int32_t tries = this->peer_cfg->get_keyingtries(this->peer_cfg); this->keyingtry++; if (tries == 0 || tries > this->keyingtry) { SIG(IKE_UP_FAILED, "peer not responding, trying again " "(%d/%d) in background ", this->keyingtry + 1, tries); reset(this); return this->task_manager->initiate(this->task_manager); } SIG(IKE_UP_FAILED, "establishing IKE_SA failed, peer not responding"); break; } case IKE_REKEYING: SIG(IKE_REKEY_FAILED, "rekeying IKE_SA failed, peer not responding"); break; case IKE_DELETING: SIG(IKE_DOWN_FAILED, "proper IKE_SA delete failed, peer not responding"); break; default: break; } /* summarize how we have to handle each child */ to_route = linked_list_create(); to_restart = linked_list_create(); iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)&child_sa)) { child_cfg = child_sa->get_config(child_sa); if (child_sa->get_state(child_sa) == CHILD_ROUTED) { /* reroute routed CHILD_SAs */ to_route->insert_last(to_route, child_cfg); } else { /* use DPD action for established CHILD_SAs */ switch (this->peer_cfg->get_dpd_action(this->peer_cfg)) { case DPD_ROUTE: to_route->insert_last(to_route, child_cfg); break; case DPD_RESTART: to_restart->insert_last(to_restart, child_cfg); break; default: break; } } } iterator->destroy(iterator); /* create a new IKE_SA if we have to route or to restart */ if (to_route->get_count(to_route) || to_restart->get_count(to_restart)) { private_ike_sa_t *new; task_t *task; new = (private_ike_sa_t*)charon->ike_sa_manager->checkout_new( charon->ike_sa_manager, TRUE); set_peer_cfg(new, this->peer_cfg); /* use actual used host, not the wildcarded one in config */ new->other_host->destroy(new->other_host); new->other_host = this->other_host->clone(this->other_host); /* install routes */ while (to_route->remove_last(to_route, (void**)&child_cfg) == SUCCESS) { route(new, child_cfg); } /* restart children */ if (to_restart->get_count(to_restart)) { task = (task_t*)ike_init_create(&new->public, TRUE, NULL); new->task_manager->queue_task(new->task_manager, task); task = (task_t*)ike_natd_create(&new->public, TRUE); new->task_manager->queue_task(new->task_manager, task); task = (task_t*)ike_cert_create(&new->public, TRUE); new->task_manager->queue_task(new->task_manager, task); task = (task_t*)ike_config_create(&new->public, TRUE); new->task_manager->queue_task(new->task_manager, task); task = (task_t*)ike_auth_create(&new->public, TRUE); new->task_manager->queue_task(new->task_manager, task); while (to_restart->remove_last(to_restart, (void**)&child_cfg) == SUCCESS) { task = (task_t*)child_create_create(&new->public, child_cfg); new->task_manager->queue_task(new->task_manager, task); } new->task_manager->initiate(new->task_manager); } charon->ike_sa_manager->checkin(charon->ike_sa_manager, &new->public); } to_route->destroy(to_route); to_restart->destroy(to_restart); return DESTROY_ME; } return SUCCESS; } /** * Implementation of ike_sa_t.get_prf. */ static prf_t *get_prf(private_ike_sa_t *this) { return this->prf; } /** * Implementation of ike_sa_t.get_prf. */ static prf_t *get_child_prf(private_ike_sa_t *this) { return this->child_prf; } /** * Implementation of ike_sa_t.get_skp_bild */ static chunk_t get_skp_build(private_ike_sa_t *this) { return this->skp_build; } /** * Implementation of ike_sa_t.get_skp_verify */ static chunk_t get_skp_verify(private_ike_sa_t *this) { return this->skp_verify; } /** * Implementation of ike_sa_t.get_id. */ static ike_sa_id_t* get_id(private_ike_sa_t *this) { return this->ike_sa_id; } /** * Implementation of ike_sa_t.get_my_id. */ static identification_t* get_my_id(private_ike_sa_t *this) { return this->my_id; } /** * Implementation of ike_sa_t.set_my_id. */ static void set_my_id(private_ike_sa_t *this, identification_t *me) { DESTROY_IF(this->my_id); this->my_id = me; } /** * Implementation of ike_sa_t.get_other_id. */ static identification_t* get_other_id(private_ike_sa_t *this) { return this->other_id; } /** * Implementation of ike_sa_t.set_other_id. */ static void set_other_id(private_ike_sa_t *this, identification_t *other) { DESTROY_IF(this->other_id); this->other_id = other; } /** * Implementation of ike_sa_t.get_other_ca. */ static ca_info_t* get_other_ca(private_ike_sa_t *this) { return this->other_ca; } /** * Implementation of ike_sa_t.set_other_ca. */ static void set_other_ca(private_ike_sa_t *this, ca_info_t *other_ca) { this->other_ca = other_ca; } /** * Implementation of ike_sa_t.set_virtual_ip */ static void set_virtual_ip(private_ike_sa_t *this, bool local, host_t *ip) { if (local) { DBG1(DBG_IKE, "installing new virtual IP %H", ip); if (this->my_virtual_ip) { DBG1(DBG_IKE, "removing old virtual IP %H", this->my_virtual_ip); charon->kernel_interface->del_ip(charon->kernel_interface, this->my_virtual_ip, this->my_host); this->my_virtual_ip->destroy(this->my_virtual_ip); } if (charon->kernel_interface->add_ip(charon->kernel_interface, ip, this->my_host) == SUCCESS) { this->my_virtual_ip = ip->clone(ip); } else { DBG1(DBG_IKE, "installing virtual IP %H failed", ip); this->my_virtual_ip = NULL; } } else { DESTROY_IF(this->other_virtual_ip); this->other_virtual_ip = ip->clone(ip); } } /** * Implementation of ike_sa_t.get_virtual_ip */ static host_t* get_virtual_ip(private_ike_sa_t *this, bool local) { if (local) { return this->my_virtual_ip; } else { return this->other_virtual_ip; } } /** * Implementation of ike_sa_t.derive_keys. */ static status_t derive_keys(private_ike_sa_t *this, proposal_t *proposal, chunk_t secret, chunk_t nonce_i, chunk_t nonce_r, bool initiator, prf_t *child_prf, prf_t *old_prf) { prf_plus_t *prf_plus; chunk_t skeyseed, key, nonces, prf_plus_seed; algorithm_t *algo; size_t key_size; crypter_t *crypter_i, *crypter_r; signer_t *signer_i, *signer_r; u_int8_t spi_i_buf[sizeof(u_int64_t)], spi_r_buf[sizeof(u_int64_t)]; chunk_t spi_i = chunk_from_buf(spi_i_buf); chunk_t spi_r = chunk_from_buf(spi_r_buf); /* Create SAs general purpose PRF first, we may use it here */ if (!proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION, &algo)) { DBG1(DBG_IKE, "key derivation failed: no PSEUDO_RANDOM_FUNCTION");; return FAILED; } this->prf = prf_create(algo->algorithm); if (this->prf == NULL) { DBG1(DBG_IKE, "key derivation failed: PSEUDO_RANDOM_FUNCTION " "%N not supported!", pseudo_random_function_names, algo->algorithm); return FAILED; } DBG4(DBG_IKE, "shared Diffie Hellman secret %B", &secret); nonces = chunk_cat("cc", nonce_i, nonce_r); *((u_int64_t*)spi_i.ptr) = this->ike_sa_id->get_initiator_spi(this->ike_sa_id); *((u_int64_t*)spi_r.ptr) = this->ike_sa_id->get_responder_spi(this->ike_sa_id); prf_plus_seed = chunk_cat("ccc", nonces, spi_i, spi_r); /* KEYMAT = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr) * * if we are rekeying, SKEYSEED is built on another way */ if (child_prf == NULL) /* not rekeying */ { /* SKEYSEED = prf(Ni | Nr, g^ir) */ this->prf->set_key(this->prf, nonces); this->prf->allocate_bytes(this->prf, secret, &skeyseed); DBG4(DBG_IKE, "SKEYSEED %B", &skeyseed); this->prf->set_key(this->prf, skeyseed); chunk_free(&skeyseed); chunk_free(&secret); prf_plus = prf_plus_create(this->prf, prf_plus_seed); } else { /* SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr) * use OLD SAs PRF functions for both prf_plus and prf */ secret = chunk_cat("mc", secret, nonces); child_prf->allocate_bytes(child_prf, secret, &skeyseed); DBG4(DBG_IKE, "SKEYSEED %B", &skeyseed); old_prf->set_key(old_prf, skeyseed); chunk_free(&skeyseed); chunk_free(&secret); prf_plus = prf_plus_create(old_prf, prf_plus_seed); } chunk_free(&nonces); chunk_free(&prf_plus_seed); /* KEYMAT = SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr */ /* SK_d is used for generating CHILD_SA key mat => child_prf */ proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION, &algo); this->child_prf = prf_create(algo->algorithm); key_size = this->child_prf->get_key_size(this->child_prf); prf_plus->allocate_bytes(prf_plus, key_size, &key); DBG4(DBG_IKE, "Sk_d secret %B", &key); this->child_prf->set_key(this->child_prf, key); chunk_free(&key); /* SK_ai/SK_ar used for integrity protection => signer_in/signer_out */ if (!proposal->get_algorithm(proposal, INTEGRITY_ALGORITHM, &algo)) { DBG1(DBG_IKE, "key derivation failed: no INTEGRITY_ALGORITHM"); return FAILED; } signer_i = signer_create(algo->algorithm); signer_r = signer_create(algo->algorithm); if (signer_i == NULL || signer_r == NULL) { DBG1(DBG_IKE, "key derivation failed: INTEGRITY_ALGORITHM " "%N not supported!", integrity_algorithm_names ,algo->algorithm); return FAILED; } key_size = signer_i->get_key_size(signer_i); prf_plus->allocate_bytes(prf_plus, key_size, &key); DBG4(DBG_IKE, "Sk_ai secret %B", &key); signer_i->set_key(signer_i, key); chunk_free(&key); prf_plus->allocate_bytes(prf_plus, key_size, &key); DBG4(DBG_IKE, "Sk_ar secret %B", &key); signer_r->set_key(signer_r, key); chunk_free(&key); if (initiator) { this->signer_in = signer_r; this->signer_out = signer_i; } else { this->signer_in = signer_i; this->signer_out = signer_r; } /* SK_ei/SK_er used for encryption => crypter_in/crypter_out */ if (!proposal->get_algorithm(proposal, ENCRYPTION_ALGORITHM, &algo)) { DBG1(DBG_IKE, "key derivation failed: no ENCRYPTION_ALGORITHM"); return FAILED; } crypter_i = crypter_create(algo->algorithm, algo->key_size / 8); crypter_r = crypter_create(algo->algorithm, algo->key_size / 8); if (crypter_i == NULL || crypter_r == NULL) { DBG1(DBG_IKE, "key derivation failed: ENCRYPTION_ALGORITHM " "%N (key size %d) not supported!", encryption_algorithm_names, algo->algorithm, algo->key_size); return FAILED; } key_size = crypter_i->get_key_size(crypter_i); prf_plus->allocate_bytes(prf_plus, key_size, &key); DBG4(DBG_IKE, "Sk_ei secret %B", &key); crypter_i->set_key(crypter_i, key); chunk_free(&key); prf_plus->allocate_bytes(prf_plus, key_size, &key); DBG4(DBG_IKE, "Sk_er secret %B", &key); crypter_r->set_key(crypter_r, key); chunk_free(&key); if (initiator) { this->crypter_in = crypter_r; this->crypter_out = crypter_i; } else { this->crypter_in = crypter_i; this->crypter_out = crypter_r; } /* SK_pi/SK_pr used for authentication => stored for later */ key_size = this->prf->get_key_size(this->prf); prf_plus->allocate_bytes(prf_plus, key_size, &key); DBG4(DBG_IKE, "Sk_pi secret %B", &key); if (initiator) { this->skp_build = key; } else { this->skp_verify = key; } prf_plus->allocate_bytes(prf_plus, key_size, &key); DBG4(DBG_IKE, "Sk_pr secret %B", &key); if (initiator) { this->skp_verify = key; } else { this->skp_build = key; } /* all done, prf_plus not needed anymore */ prf_plus->destroy(prf_plus); return SUCCESS; } /** * Implementation of ike_sa_t.add_child_sa. */ static void add_child_sa(private_ike_sa_t *this, child_sa_t *child_sa) { this->child_sas->insert_last(this->child_sas, child_sa); } /** * Implementation of ike_sa_t.get_child_sa. */ static child_sa_t* get_child_sa(private_ike_sa_t *this, protocol_id_t protocol, u_int32_t spi, bool inbound) { iterator_t *iterator; child_sa_t *current, *found = NULL; iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)¤t)) { if (current->get_spi(current, inbound) == spi && current->get_protocol(current) == protocol) { found = current; } } iterator->destroy(iterator); return found; } /** * Implementation of ike_sa_t.create_child_sa_iterator. */ static iterator_t* create_child_sa_iterator(private_ike_sa_t *this) { return this->child_sas->create_iterator(this->child_sas, TRUE); } /** * Implementation of ike_sa_t.rekey_child_sa. */ static status_t rekey_child_sa(private_ike_sa_t *this, protocol_id_t protocol, u_int32_t spi) { child_sa_t *child_sa; child_rekey_t *child_rekey; child_sa = get_child_sa(this, protocol, spi, TRUE); if (child_sa) { child_rekey = child_rekey_create(&this->public, child_sa); this->task_manager->queue_task(this->task_manager, &child_rekey->task); return this->task_manager->initiate(this->task_manager); } return FAILED; } /** * Implementation of ike_sa_t.delete_child_sa. */ static status_t delete_child_sa(private_ike_sa_t *this, protocol_id_t protocol, u_int32_t spi) { child_sa_t *child_sa; child_delete_t *child_delete; child_sa = get_child_sa(this, protocol, spi, TRUE); if (child_sa) { child_delete = child_delete_create(&this->public, child_sa); this->task_manager->queue_task(this->task_manager, &child_delete->task); return this->task_manager->initiate(this->task_manager); } return FAILED; } /** * Implementation of ike_sa_t.destroy_child_sa. */ static status_t destroy_child_sa(private_ike_sa_t *this, protocol_id_t protocol, u_int32_t spi) { iterator_t *iterator; child_sa_t *child_sa; status_t status = NOT_FOUND; iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while (iterator->iterate(iterator, (void**)&child_sa)) { if (child_sa->get_protocol(child_sa) == protocol && child_sa->get_spi(child_sa, TRUE) == spi) { child_sa->destroy(child_sa); iterator->remove(iterator); status = SUCCESS; break; } } iterator->destroy(iterator); return status; } /** * Implementation of public_ike_sa_t.delete. */ static status_t delete_(private_ike_sa_t *this) { ike_delete_t *ike_delete; switch (this->state) { case IKE_ESTABLISHED: case IKE_REKEYING: ike_delete = ike_delete_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, &ike_delete->task); return this->task_manager->initiate(this->task_manager); default: DBG1(DBG_IKE, "destroying IKE_SA in state %N without notification", ike_sa_state_names, this->state); break; } return DESTROY_ME; } /** * Implementation of ike_sa_t.rekey. */ static status_t rekey(private_ike_sa_t *this) { ike_rekey_t *ike_rekey; ike_rekey = ike_rekey_create(&this->public, TRUE); this->task_manager->queue_task(this->task_manager, &ike_rekey->task); return this->task_manager->initiate(this->task_manager); } /** * Implementation of ike_sa_t.reestablish */ static void reestablish(private_ike_sa_t *this) { private_ike_sa_t *other; iterator_t *iterator; child_sa_t *child_sa; child_cfg_t *child_cfg; task_t *task; job_t *job; other = (private_ike_sa_t*)charon->ike_sa_manager->checkout_new( charon->ike_sa_manager, TRUE); set_peer_cfg(other, this->peer_cfg); other->other_host->destroy(other->other_host); other->other_host = this->other_host->clone(this->other_host); if (this->my_virtual_ip) { /* if we already have a virtual IP, we reuse it */ set_virtual_ip(other, TRUE, this->my_virtual_ip); } if (this->state == IKE_ESTABLISHED) { task = (task_t*)ike_init_create(&other->public, TRUE, NULL); other->task_manager->queue_task(other->task_manager, task); task = (task_t*)ike_natd_create(&other->public, TRUE); other->task_manager->queue_task(other->task_manager, task); task = (task_t*)ike_cert_create(&other->public, TRUE); other->task_manager->queue_task(other->task_manager, task); task = (task_t*)ike_config_create(&other->public, TRUE); other->task_manager->queue_task(other->task_manager, task); task = (task_t*)ike_auth_create(&other->public, TRUE); other->task_manager->queue_task(other->task_manager, task); } other->task_manager->adopt_tasks(other->task_manager, this->task_manager); /* Create task for established children, adopt routed children directly */ iterator = this->child_sas->create_iterator(this->child_sas, TRUE); while(iterator->iterate(iterator, (void**)&child_sa)) { switch (child_sa->get_state(child_sa)) { case CHILD_ROUTED: { iterator->remove(iterator); other->child_sas->insert_first(other->child_sas, child_sa); break; } default: { child_cfg = child_sa->get_config(child_sa); task = (task_t*)child_create_create(&other->public, child_cfg); other->task_manager->queue_task(other->task_manager, task); break; } } } iterator->destroy(iterator); other->task_manager->initiate(other->task_manager); charon->ike_sa_manager->checkin(charon->ike_sa_manager, &other->public); job = (job_t*)delete_ike_sa_job_create(this->ike_sa_id, TRUE); charon->job_queue->add(charon->job_queue, job); } /** * Implementation of ike_sa_t.inherit. */ static status_t inherit(private_ike_sa_t *this, private_ike_sa_t *other) { child_sa_t *child_sa; host_t *ip; /* apply hosts and ids */ this->my_host->destroy(this->my_host); this->other_host->destroy(this->other_host); this->my_id->destroy(this->my_id); this->other_id->destroy(this->other_id); this->my_host = other->my_host->clone(other->my_host); this->other_host = other->other_host->clone(other->other_host); this->my_id = other->my_id->clone(other->my_id); this->other_id = other->other_id->clone(other->other_id); /* apply virtual assigned IPs... */ if (other->my_virtual_ip) { this->my_virtual_ip = other->my_virtual_ip; other->my_virtual_ip = NULL; } if (other->other_virtual_ip) { this->other_virtual_ip = other->other_virtual_ip; other->other_virtual_ip = NULL; } /* ... and DNS servers */ while (other->dns_servers->remove_last(other->dns_servers, (void**)&ip) == SUCCESS) { this->dns_servers->insert_first(this->dns_servers, ip); } /* adopt all children */ while (other->child_sas->remove_last(other->child_sas, (void**)&child_sa) == SUCCESS) { this->child_sas->insert_first(this->child_sas, (void*)child_sa); } /* move pending tasks to the new IKE_SA */ this->task_manager->adopt_tasks(this->task_manager, other->task_manager); /* we have to initate here, there may be new tasks to handle */ return this->task_manager->initiate(this->task_manager); } /** * Implementation of ike_sa_t.is_natt_enabled. */ static bool is_natt_enabled(private_ike_sa_t *this) { return this->nat_here || this->nat_there; } /** * Implementation of ike_sa_t.enable_natt. */ static void enable_natt(private_ike_sa_t *this, bool local) { if (local) { DBG1(DBG_IKE, "local host is behind NAT, scheduling keep alives"); this->nat_here = TRUE; send_keepalive(this); } else { DBG1(DBG_IKE, "remote host is behind NAT"); this->nat_there = TRUE; } } /** * Implementation of ike_sa_t.remove_dns_server */ static void remove_dns_servers(private_ike_sa_t *this) { FILE *file; struct stat stats; chunk_t contents, line, orig_line, token; char string[INET6_ADDRSTRLEN]; host_t *ip; iterator_t *iterator; if (this->dns_servers->get_count(this->dns_servers) == 0) { /* don't touch anything if we have no nameservers installed */ return; } file = fopen(RESOLV_CONF, "r"); if (file == NULL || stat(RESOLV_CONF, &stats) != 0) { DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s", RESOLV_CONF, strerror(errno)); return; } contents = chunk_alloca((size_t)stats.st_size); if (fread(contents.ptr, 1, contents.len, file) != contents.len) { DBG1(DBG_IKE, "unable to read DNS configuration file: %s", strerror(errno)); fclose(file); return; } fclose(file); file = fopen(RESOLV_CONF, "w"); if (file == NULL) { DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s", RESOLV_CONF, strerror(errno)); return; } iterator = this->dns_servers->create_iterator(this->dns_servers, TRUE); while (fetchline(&contents, &line)) { bool found = FALSE; orig_line = line; if (extract_token(&token, ' ', &line) && strncasecmp(token.ptr, "nameserver", token.len) == 0) { if (!extract_token(&token, ' ', &line)) { token = line; } iterator->reset(iterator); while (iterator->iterate(iterator, (void**)&ip)) { snprintf(string, sizeof(string), "%H", ip); if (strlen(string) == token.len && strncmp(token.ptr, string, token.len) == 0) { iterator->remove(iterator); ip->destroy(ip); found = TRUE; break; } } } if (!found) { /* write line untouched back to file */ fwrite(orig_line.ptr, orig_line.len, 1, file); fprintf(file, "\n"); } } iterator->destroy(iterator); fclose(file); } /** * Implementation of ike_sa_t.add_dns_server */ static void add_dns_server(private_ike_sa_t *this, host_t *dns) { FILE *file; struct stat stats; chunk_t contents; DBG1(DBG_IKE, "installing DNS server %H", dns); file = fopen(RESOLV_CONF, "a+"); if (file == NULL || stat(RESOLV_CONF, &stats) != 0) { DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s", RESOLV_CONF, strerror(errno)); return; } contents = chunk_alloca(stats.st_size); if (fread(contents.ptr, 1, contents.len, file) != contents.len) { DBG1(DBG_IKE, "unable to read DNS configuration file: %s", strerror(errno)); fclose(file); return; } fclose(file); file = fopen(RESOLV_CONF, "w"); if (file == NULL) { DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s", RESOLV_CONF, strerror(errno)); return; } if (fprintf(file, "nameserver %H # added by strongSwan, assigned by %D\n", dns, this->other_id) < 0) { DBG1(DBG_IKE, "unable to write DNS configuration: %s", strerror(errno)); } else { this->dns_servers->insert_last(this->dns_servers, dns->clone(dns)); } fwrite(contents.ptr, contents.len, 1, file); fclose(file); } /** * Implementation of ike_sa_t.destroy. */ static void destroy(private_ike_sa_t *this) { this->child_sas->destroy_offset(this->child_sas, offsetof(child_sa_t, destroy)); DESTROY_IF(this->crypter_in); DESTROY_IF(this->crypter_out); DESTROY_IF(this->signer_in); DESTROY_IF(this->signer_out); DESTROY_IF(this->prf); DESTROY_IF(this->child_prf); chunk_free(&this->skp_verify); chunk_free(&this->skp_build); if (this->my_virtual_ip) { charon->kernel_interface->del_ip(charon->kernel_interface, this->my_virtual_ip, this->my_host); this->my_virtual_ip->destroy(this->my_virtual_ip); } DESTROY_IF(this->other_virtual_ip); remove_dns_servers(this); this->dns_servers->destroy_offset(this->dns_servers, offsetof(host_t, destroy)); DESTROY_IF(this->my_host); DESTROY_IF(this->other_host); DESTROY_IF(this->my_id); DESTROY_IF(this->other_id); DESTROY_IF(this->ike_cfg); DESTROY_IF(this->peer_cfg); this->ike_sa_id->destroy(this->ike_sa_id); this->task_manager->destroy(this->task_manager); free(this); } /* * Described in header. */ ike_sa_t * ike_sa_create(ike_sa_id_t *ike_sa_id) { private_ike_sa_t *this = malloc_thing(private_ike_sa_t); static u_int32_t unique_id = 0; /* Public functions */ this->public.get_state = (ike_sa_state_t (*)(ike_sa_t*)) get_state; this->public.set_state = (void (*)(ike_sa_t*,ike_sa_state_t)) set_state; this->public.get_stats = (void (*)(ike_sa_t*,u_int32_t*))get_stats; this->public.get_name = (char* (*)(ike_sa_t*))get_name; this->public.process_message = (status_t (*)(ike_sa_t*, message_t*)) process_message; this->public.initiate = (status_t (*)(ike_sa_t*,child_cfg_t*)) initiate; this->public.route = (status_t (*)(ike_sa_t*,child_cfg_t*)) route; this->public.unroute = (status_t (*)(ike_sa_t*,u_int32_t)) unroute; this->public.acquire = (status_t (*)(ike_sa_t*,u_int32_t)) acquire; this->public.get_ike_cfg = (ike_cfg_t* (*)(ike_sa_t*))get_ike_cfg; this->public.set_ike_cfg = (void (*)(ike_sa_t*,ike_cfg_t*))set_ike_cfg; this->public.get_peer_cfg = (peer_cfg_t* (*)(ike_sa_t*))get_peer_cfg; this->public.set_peer_cfg = (void (*)(ike_sa_t*,peer_cfg_t*))set_peer_cfg; this->public.get_id = (ike_sa_id_t* (*)(ike_sa_t*)) get_id; this->public.get_my_host = (host_t* (*)(ike_sa_t*)) get_my_host; this->public.set_my_host = (void (*)(ike_sa_t*,host_t*)) set_my_host; this->public.get_other_host = (host_t* (*)(ike_sa_t*)) get_other_host; this->public.set_other_host = (void (*)(ike_sa_t*,host_t*)) set_other_host; this->public.get_my_id = (identification_t* (*)(ike_sa_t*)) get_my_id; this->public.set_my_id = (void (*)(ike_sa_t*,identification_t*)) set_my_id; this->public.get_other_id = (identification_t* (*)(ike_sa_t*)) get_other_id; this->public.set_other_id = (void (*)(ike_sa_t*,identification_t*)) set_other_id; this->public.get_other_ca = (ca_info_t* (*)(ike_sa_t*)) get_other_ca; this->public.set_other_ca = (void (*)(ike_sa_t*,ca_info_t*)) set_other_ca; this->public.retransmit = (status_t (*)(ike_sa_t *, u_int32_t)) retransmit; this->public.delete = (status_t (*)(ike_sa_t*))delete_; this->public.destroy = (void (*)(ike_sa_t*))destroy; this->public.send_dpd = (status_t (*)(ike_sa_t*)) send_dpd; this->public.send_keepalive = (void (*)(ike_sa_t*)) send_keepalive; this->public.get_prf = (prf_t* (*)(ike_sa_t*)) get_prf; this->public.get_child_prf = (prf_t* (*)(ike_sa_t *)) get_child_prf; this->public.get_skp_verify = (chunk_t (*)(ike_sa_t *)) get_skp_verify; this->public.get_skp_build = (chunk_t (*)(ike_sa_t *)) get_skp_build; this->public.derive_keys = (status_t (*)(ike_sa_t *,proposal_t*,chunk_t,chunk_t,chunk_t,bool,prf_t*,prf_t*)) derive_keys; this->public.add_child_sa = (void (*)(ike_sa_t*,child_sa_t*)) add_child_sa; this->public.get_child_sa = (child_sa_t* (*)(ike_sa_t*,protocol_id_t,u_int32_t,bool)) get_child_sa; this->public.create_child_sa_iterator = (iterator_t* (*)(ike_sa_t*)) create_child_sa_iterator; this->public.rekey_child_sa = (status_t (*)(ike_sa_t*,protocol_id_t,u_int32_t)) rekey_child_sa; this->public.delete_child_sa = (status_t (*)(ike_sa_t*,protocol_id_t,u_int32_t)) delete_child_sa; this->public.destroy_child_sa = (status_t (*)(ike_sa_t*,protocol_id_t,u_int32_t))destroy_child_sa; this->public.enable_natt = (void (*)(ike_sa_t*, bool)) enable_natt; this->public.is_natt_enabled = (bool (*)(ike_sa_t*)) is_natt_enabled; this->public.rekey = (status_t (*)(ike_sa_t*))rekey; this->public.reestablish = (void (*)(ike_sa_t*))reestablish; this->public.inherit = (status_t (*)(ike_sa_t*,ike_sa_t*))inherit; this->public.generate_message = (status_t (*)(ike_sa_t*,message_t*,packet_t**))generate_message; this->public.reset = (void (*)(ike_sa_t*))reset; this->public.get_unique_id = (u_int32_t (*)(ike_sa_t*))get_unique_id; this->public.set_virtual_ip = (void (*)(ike_sa_t*,bool,host_t*))set_virtual_ip; this->public.get_virtual_ip = (host_t* (*)(ike_sa_t*,bool))get_virtual_ip; this->public.add_dns_server = (void (*)(ike_sa_t*,host_t*))add_dns_server; /* initialize private fields */ this->ike_sa_id = ike_sa_id->clone(ike_sa_id); this->child_sas = linked_list_create(); this->my_host = host_create_any(AF_INET); this->other_host = host_create_any(AF_INET); this->my_id = identification_create_from_encoding(ID_ANY, chunk_empty); this->other_id = identification_create_from_encoding(ID_ANY, chunk_empty); this->other_ca = NULL; this->crypter_in = NULL; this->crypter_out = NULL; this->signer_in = NULL; this->signer_out = NULL; this->prf = NULL; this->skp_verify = chunk_empty; this->skp_build = chunk_empty; this->child_prf = NULL; this->nat_here = FALSE; this->nat_there = FALSE; this->state = IKE_CREATED; this->time.inbound = this->time.outbound = time(NULL); this->time.established = 0; this->time.rekey = 0; this->time.delete = 0; this->ike_cfg = NULL; this->peer_cfg = NULL; this->task_manager = task_manager_create(&this->public); this->unique_id = ++unique_id; this->my_virtual_ip = NULL; this->other_virtual_ip = NULL; this->dns_servers = linked_list_create(); this->keyingtry = 0; return &this->public; }