/* * Copyright (C) 2014 Andreas Steffen * HSR Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include "bliss_fft.h" typedef struct private_bliss_fft_t private_bliss_fft_t; /** * Private data structure for bliss_fft_t object */ struct private_bliss_fft_t { /** * Public interface. */ bliss_fft_t public; /** * FFT parameter set used as constants */ bliss_fft_params_t *p; }; METHOD(bliss_fft_t, get_size, uint16_t, private_bliss_fft_t *this) { return this->p->n; } METHOD(bliss_fft_t, get_modulus, uint16_t, private_bliss_fft_t *this) { return this->p->q; } /** * Do an FFT butterfly operation * * x[i1] ---|+|------- x[i1] * \/ * /\ w[iw] * x[i2] ---|-|--|*|-- x[i2] * */ static void butterfly(private_bliss_fft_t *this, uint32_t *x, int i1,int i2, int iw) { uint32_t xp, xm; xp = x[i1] + x[i2]; xm = x[i1] + (this->p->q - x[i2]); if (xp >= this->p->q) { xp -= this->p->q; } x[i1] = xp; x[i2] = (xm * this->p->w[iw]) % this->p->q; } /** * Trivial butterfly operation of last FFT stage */ static void butterfly_last(private_bliss_fft_t *this, uint32_t *x, int i1) { uint32_t xp, xm; int i2 = i1 + 1; xp = x[i1] + x[i2]; xm = x[i1] + (this->p->q - x[i2]); if (xp >= this->p->q) { xp -= this->p->q; } if (xm >= this->p->q) { xm -= this->p->q; } x[i1] = xp; x[i2] = xm; } METHOD(bliss_fft_t, transform, void, private_bliss_fft_t *this, uint32_t *a, uint32_t *b, bool inverse) { int stage, i, j, k, m, n, t, iw, i_rev; uint16_t q; uint32_t tmp; /* we are going to use the transform size n and the modulus q a lot */ n = this->p->n; q = this->p->q; if (!inverse) { /* apply linear phase needed for negative wrapped convolution */ for (i = 0; i < n; i++) { b[i] = (a[i] * this->p->w[i]) % q; } } else if (a != b) { /* copy if input and output array are not the same */ for (i = 0; i < n; i++) { b[i] = a[i]; } } m = n; k = 1; for (stage = this->p->stages; stage > 0; stage--) { m >>= 1; t = 0; for (j = 0; j < k; j++) { if (stage == 1) { butterfly_last(this, b, t); } else { for (i = 0; i < m; i++) { iw = 2 * (inverse ? (n - i * k) : (i * k)); butterfly(this, b, t + i, t + i + m, iw); } } t += 2*m; } k <<= 1; } /* Sort output in bit-reverse order */ for (i = 0; i < n; i++) { i_rev = this->p->rev[i]; if (i_rev > i) { tmp = b[i]; b[i] = b[i_rev]; b[i_rev] = tmp; } } /** * Compensate the linear phase needed for negative wrapped convolution * and normalize the output array with 1/n mod q after the inverse FFT. */ if (inverse) { for (i = 0; i < n; i++) { b[i] = (((b[i] * this->p->w[2*n - i]) % q) * this->p->n_inv) % q; } } } METHOD(bliss_fft_t, destroy, void, private_bliss_fft_t *this) { free(this); } /** * See header. */ bliss_fft_t *bliss_fft_create(bliss_fft_params_t *params) { private_bliss_fft_t *this; INIT(this, .public = { .get_size = _get_size, .get_modulus = _get_modulus, .transform = _transform, .destroy = _destroy, }, .p = params, ); return &this->public; }