/* * Copyright (C) 2017 Tobias Brunner * Copyright (C) 2005 Jan Hutter * Copyright (C) 2005-2009 Martin Willi * Copyright (C) 2012 Andreas Steffen * HSR Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include #include #include "gmp_rsa_private_key.h" #include "gmp_rsa_public_key.h" #include #include #include #include #include #ifdef HAVE_MPZ_POWM_SEC # undef mpz_powm # define mpz_powm mpz_powm_sec #endif /** * Public exponent to use for key generation. */ #define PUBLIC_EXPONENT 0x10001 typedef struct private_gmp_rsa_private_key_t private_gmp_rsa_private_key_t; /** * Private data of a gmp_rsa_private_key_t object. */ struct private_gmp_rsa_private_key_t { /** * Public interface for this signer. */ gmp_rsa_private_key_t public; /** * Public modulus. */ mpz_t n; /** * Public exponent. */ mpz_t e; /** * Private prime 1. */ mpz_t p; /** * Private Prime 2. */ mpz_t q; /** * Carmichael function m = lambda(n) = lcm(p-1,q-1). */ mpz_t m; /** * Private exponent and optional secret sharing polynomial coefficients. */ mpz_t *d; /** * Private exponent 1. */ mpz_t exp1; /** * Private exponent 2. */ mpz_t exp2; /** * Private coefficient. */ mpz_t coeff; /** * Total number of private key shares */ u_int shares; /** * Secret sharing threshold */ u_int threshold; /** * Optional verification key (threshold > 1). */ mpz_t v; /** * Keysize in bytes. */ size_t k; /** * reference count */ refcount_t ref; }; /** * Convert a MP integer into a chunk_t */ chunk_t gmp_mpz_to_chunk(const mpz_t value) { chunk_t n; n.len = 1 + mpz_sizeinbase(value, 2) / BITS_PER_BYTE; n.ptr = mpz_export(NULL, NULL, 1, n.len, 1, 0, value); if (n.ptr == NULL) { /* if we have zero in "value", gmp returns NULL */ n.len = 0; } return n; } /** * Auxiliary function overwriting private key material with zero bytes */ static void mpz_clear_sensitive(mpz_t z) { size_t len = mpz_size(z) * GMP_LIMB_BITS / BITS_PER_BYTE; uint8_t *zeros = alloca(len); memset(zeros, 0, len); /* overwrite mpz_t with zero bytes before clearing it */ mpz_import(z, len, 1, 1, 1, 0, zeros); mpz_clear(z); } /** * Create a mpz prime of at least prime_size */ static status_t compute_prime(size_t prime_size, bool safe, mpz_t *p, mpz_t *q) { rng_t *rng; chunk_t random_bytes; int count = 0; rng = lib->crypto->create_rng(lib->crypto, RNG_TRUE); if (!rng) { DBG1(DBG_LIB, "no RNG of quality %N found", rng_quality_names, RNG_TRUE); return FAILED; } mpz_init(*p); mpz_init(*q); do { if (!rng->allocate_bytes(rng, prime_size, &random_bytes)) { DBG1(DBG_LIB, "failed to allocate random prime"); mpz_clear(*p); mpz_clear(*q); rng->destroy(rng); return FAILED; } /* make sure the two most significant bits are set */ if (safe) { random_bytes.ptr[0] &= 0x7F; random_bytes.ptr[0] |= 0x60; mpz_import(*q, random_bytes.len, 1, 1, 1, 0, random_bytes.ptr); do { count++; mpz_nextprime (*q, *q); mpz_mul_ui(*p, *q, 2); mpz_add_ui(*p, *p, 1); } while (mpz_probab_prime_p(*p, 10) == 0); DBG2(DBG_LIB, "safe prime found after %d iterations", count); } else { random_bytes.ptr[0] |= 0xC0; mpz_import(*p, random_bytes.len, 1, 1, 1, 0, random_bytes.ptr); mpz_nextprime (*p, *p); } chunk_clear(&random_bytes); } /* check if the prime isn't too large */ while (((mpz_sizeinbase(*p, 2) + 7) / 8) > prime_size); rng->destroy(rng); /* additionally return p-1 */ mpz_sub_ui(*q, *p, 1); return SUCCESS; } /** * PKCS#1 RSADP function */ static chunk_t rsadp(private_gmp_rsa_private_key_t *this, chunk_t data) { mpz_t t1, t2; chunk_t decrypted; mpz_init(t1); mpz_init(t2); mpz_import(t1, data.len, 1, 1, 1, 0, data.ptr); mpz_powm(t2, t1, this->exp1, this->p); /* m1 = c^dP mod p */ mpz_powm(t1, t1, this->exp2, this->q); /* m2 = c^dQ mod Q */ mpz_sub(t2, t2, t1); /* h = qInv (m1 - m2) mod p */ mpz_mod(t2, t2, this->p); mpz_mul(t2, t2, this->coeff); mpz_mod(t2, t2, this->p); mpz_mul(t2, t2, this->q); /* m = m2 + h q */ mpz_add(t1, t1, t2); decrypted.len = this->k; decrypted.ptr = mpz_export(NULL, NULL, 1, decrypted.len, 1, 0, t1); if (decrypted.ptr == NULL) { decrypted.len = 0; } mpz_clear_sensitive(t1); mpz_clear_sensitive(t2); return decrypted; } /** * PKCS#1 RSASP1 function */ static chunk_t rsasp1(private_gmp_rsa_private_key_t *this, chunk_t data) { return rsadp(this, data); } /** * Build a signature using the PKCS#1 EMSA scheme */ static bool build_emsa_pkcs1_signature(private_gmp_rsa_private_key_t *this, hash_algorithm_t hash_algorithm, chunk_t data, chunk_t *signature) { chunk_t digestInfo = chunk_empty; chunk_t em; if (hash_algorithm != HASH_UNKNOWN) { hasher_t *hasher; chunk_t hash; int hash_oid = hasher_algorithm_to_oid(hash_algorithm); if (hash_oid == OID_UNKNOWN) { return FALSE; } hasher = lib->crypto->create_hasher(lib->crypto, hash_algorithm); if (!hasher || !hasher->allocate_hash(hasher, data, &hash)) { DESTROY_IF(hasher); return FALSE; } hasher->destroy(hasher); /* build DER-encoded digestInfo */ digestInfo = asn1_wrap(ASN1_SEQUENCE, "mm", asn1_algorithmIdentifier(hash_oid), asn1_simple_object(ASN1_OCTET_STRING, hash) ); chunk_free(&hash); data = digestInfo; } if (data.len > this->k - 3) { free(digestInfo.ptr); DBG1(DBG_LIB, "unable to sign %d bytes using a %dbit key", data.len, mpz_sizeinbase(this->n, 2)); return FALSE; } /* build chunk to rsa-decrypt: * EM = 0x00 || 0x01 || PS || 0x00 || T. * PS = 0xFF padding, with length to fill em * T = encoded_hash */ em.len = this->k; em.ptr = malloc(em.len); /* fill em with padding */ memset(em.ptr, 0xFF, em.len); /* set magic bytes */ *(em.ptr) = 0x00; *(em.ptr+1) = 0x01; *(em.ptr + em.len - data.len - 1) = 0x00; /* set DER-encoded hash */ memcpy(em.ptr + em.len - data.len, data.ptr, data.len); /* build signature */ *signature = rsasp1(this, em); free(digestInfo.ptr); free(em.ptr); return TRUE; } /** * Build a signature using the PKCS#1 EMSA PSS scheme */ static bool build_emsa_pss_signature(private_gmp_rsa_private_key_t *this, rsa_pss_params_t *params, chunk_t data, chunk_t *signature) { ext_out_function_t xof; hasher_t *hasher = NULL; rng_t *rng = NULL; xof_t *mgf = NULL; chunk_t hash, salt = chunk_empty, m, ps, db, dbmask, em; size_t embits, emlen, maskbits; bool success = FALSE; if (!params) { return FALSE; } xof = xof_mgf1_from_hash_algorithm(params->mgf1_hash); if (xof == XOF_UNDEFINED) { DBG1(DBG_LIB, "%N is not supported for MGF1", hash_algorithm_names, params->mgf1_hash); return FALSE; } /* emBits = modBits - 1 */ embits = mpz_sizeinbase(this->n, 2) - 1; /* emLen = ceil(emBits/8) */ emlen = (embits + 7) / BITS_PER_BYTE; /* mHash = Hash(M) */ hasher = lib->crypto->create_hasher(lib->crypto, params->hash); if (!hasher) { DBG1(DBG_LIB, "hash algorithm %N not supported", hash_algorithm_names, params->hash); return FALSE; } hash = chunk_alloca(hasher->get_hash_size(hasher)); if (!hasher->get_hash(hasher, data, hash.ptr)) { goto error; } salt.len = hash.len; if (params->salt.len) { salt = params->salt; } else if (params->salt_len > RSA_PSS_SALT_LEN_DEFAULT) { salt.len = params->salt_len; } if (emlen < (hash.len + salt.len + 2)) { /* too long */ goto error; } if (salt.len && !params->salt.len) { salt = chunk_alloca(salt.len); rng = lib->crypto->create_rng(lib->crypto, RNG_STRONG); if (!rng || !rng->get_bytes(rng, salt.len, salt.ptr)) { goto error; } } /* M' = 0x0000000000000000 | mHash | salt */ m = chunk_cata("ccc", chunk_from_chars(0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00), hash, salt); /* H = Hash(M') */ if (!hasher->get_hash(hasher, m, hash.ptr)) { goto error; } /* PS = 00... */ ps = chunk_alloca(emlen - salt.len - hash.len - 2); memset(ps.ptr, 0, ps.len); /* DB = PS | 0x01 | salt */ db = chunk_cata("ccc", ps, chunk_from_chars(0x01), salt); /* dbMask = MGF(H, emLen - hLen - 1) */ mgf = lib->crypto->create_xof(lib->crypto, xof); dbmask = chunk_alloca(db.len); if (!mgf) { DBG1(DBG_LIB, "%N not supported", ext_out_function_names, xof); goto error; } if (!mgf->set_seed(mgf, hash) || !mgf->get_bytes(mgf, dbmask.len, dbmask.ptr)) { goto error; } /* maskedDB = DB xor dbMask */ memxor(db.ptr, dbmask.ptr, db.len); /* zero out unused bits */ maskbits = (8 * emlen) - embits; if (maskbits) { db.ptr[0] &= (0xff >> maskbits); } /* EM = maskedDB | H | 0xbc */ em = chunk_cata("ccc", db, hash, chunk_from_chars(0xbc)); /* S = RSASP1(K, EM) */ *signature = rsasp1(this, em); success = TRUE; error: DESTROY_IF(hasher); DESTROY_IF(rng); DESTROY_IF(mgf); return success; } METHOD(private_key_t, get_type, key_type_t, private_gmp_rsa_private_key_t *this) { return KEY_RSA; } METHOD(private_key_t, sign, bool, private_gmp_rsa_private_key_t *this, signature_scheme_t scheme, void *params, chunk_t data, chunk_t *signature) { switch (scheme) { case SIGN_RSA_EMSA_PKCS1_NULL: return build_emsa_pkcs1_signature(this, HASH_UNKNOWN, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA2_224: return build_emsa_pkcs1_signature(this, HASH_SHA224, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA2_256: return build_emsa_pkcs1_signature(this, HASH_SHA256, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA2_384: return build_emsa_pkcs1_signature(this, HASH_SHA384, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA2_512: return build_emsa_pkcs1_signature(this, HASH_SHA512, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA3_224: return build_emsa_pkcs1_signature(this, HASH_SHA3_224, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA3_256: return build_emsa_pkcs1_signature(this, HASH_SHA3_256, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA3_384: return build_emsa_pkcs1_signature(this, HASH_SHA3_384, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA3_512: return build_emsa_pkcs1_signature(this, HASH_SHA3_512, data, signature); case SIGN_RSA_EMSA_PKCS1_SHA1: return build_emsa_pkcs1_signature(this, HASH_SHA1, data, signature); case SIGN_RSA_EMSA_PKCS1_MD5: return build_emsa_pkcs1_signature(this, HASH_MD5, data, signature); case SIGN_RSA_EMSA_PSS: return build_emsa_pss_signature(this, params, data, signature); default: DBG1(DBG_LIB, "signature scheme %N not supported in RSA", signature_scheme_names, scheme); return FALSE; } } METHOD(private_key_t, decrypt, bool, private_gmp_rsa_private_key_t *this, encryption_scheme_t scheme, chunk_t crypto, chunk_t *plain) { chunk_t em, stripped; bool success = FALSE; if (scheme != ENCRYPT_RSA_PKCS1) { DBG1(DBG_LIB, "encryption scheme %N not supported", encryption_scheme_names, scheme); return FALSE; } /* rsa decryption using PKCS#1 RSADP */ stripped = em = rsadp(this, crypto); /* PKCS#1 v1.5 8.1 encryption-block formatting (EB = 00 || 02 || PS || 00 || D) */ /* check for hex pattern 00 02 in decrypted message */ if ((*stripped.ptr++ != 0x00) || (*(stripped.ptr++) != 0x02)) { DBG1(DBG_LIB, "incorrect padding - probably wrong rsa key"); goto end; } stripped.len -= 2; /* the plaintext data starts after first 0x00 byte */ while (stripped.len-- > 0 && *stripped.ptr++ != 0x00) if (stripped.len == 0) { DBG1(DBG_LIB, "no plaintext data"); goto end; } *plain = chunk_clone(stripped); success = TRUE; end: chunk_clear(&em); return success; } METHOD(private_key_t, get_keysize, int, private_gmp_rsa_private_key_t *this) { return mpz_sizeinbase(this->n, 2); } METHOD(private_key_t, get_public_key, public_key_t*, private_gmp_rsa_private_key_t *this) { chunk_t n, e; public_key_t *public; n = gmp_mpz_to_chunk(this->n); e = gmp_mpz_to_chunk(this->e); public = lib->creds->create(lib->creds, CRED_PUBLIC_KEY, KEY_RSA, BUILD_RSA_MODULUS, n, BUILD_RSA_PUB_EXP, e, BUILD_END); chunk_free(&n); chunk_free(&e); return public; } METHOD(private_key_t, get_encoding, bool, private_gmp_rsa_private_key_t *this, cred_encoding_type_t type, chunk_t *encoding) { chunk_t n, e, d, p, q, exp1, exp2, coeff; bool success; n = gmp_mpz_to_chunk(this->n); e = gmp_mpz_to_chunk(this->e); d = gmp_mpz_to_chunk(*this->d); p = gmp_mpz_to_chunk(this->p); q = gmp_mpz_to_chunk(this->q); exp1 = gmp_mpz_to_chunk(this->exp1); exp2 = gmp_mpz_to_chunk(this->exp2); coeff = gmp_mpz_to_chunk(this->coeff); success = lib->encoding->encode(lib->encoding, type, NULL, encoding, CRED_PART_RSA_MODULUS, n, CRED_PART_RSA_PUB_EXP, e, CRED_PART_RSA_PRIV_EXP, d, CRED_PART_RSA_PRIME1, p, CRED_PART_RSA_PRIME2, q, CRED_PART_RSA_EXP1, exp1, CRED_PART_RSA_EXP2, exp2, CRED_PART_RSA_COEFF, coeff, CRED_PART_END); chunk_free(&n); chunk_free(&e); chunk_clear(&d); chunk_clear(&p); chunk_clear(&q); chunk_clear(&exp1); chunk_clear(&exp2); chunk_clear(&coeff); return success; } METHOD(private_key_t, get_fingerprint, bool, private_gmp_rsa_private_key_t *this, cred_encoding_type_t type, chunk_t *fp) { chunk_t n, e; bool success; if (lib->encoding->get_cache(lib->encoding, type, this, fp)) { return TRUE; } n = gmp_mpz_to_chunk(this->n); e = gmp_mpz_to_chunk(this->e); success = lib->encoding->encode(lib->encoding, type, this, fp, CRED_PART_RSA_MODULUS, n, CRED_PART_RSA_PUB_EXP, e, CRED_PART_END); chunk_free(&n); chunk_free(&e); return success; } METHOD(private_key_t, get_ref, private_key_t*, private_gmp_rsa_private_key_t *this) { ref_get(&this->ref); return &this->public.key; } METHOD(private_key_t, destroy, void, private_gmp_rsa_private_key_t *this) { if (ref_put(&this->ref)) { int i; mpz_clear(this->n); mpz_clear(this->e); mpz_clear(this->v); mpz_clear_sensitive(this->p); mpz_clear_sensitive(this->q); mpz_clear_sensitive(this->m); mpz_clear_sensitive(this->exp1); mpz_clear_sensitive(this->exp2); mpz_clear_sensitive(this->coeff); for (i = 0; i < this->threshold; i++) { mpz_clear_sensitive(*this->d + i); } free(this->d); lib->encoding->clear_cache(lib->encoding, this); free(this); } } /** * Check the loaded key if it is valid and usable */ static status_t check(private_gmp_rsa_private_key_t *this) { mpz_t u, p1, q1; status_t status = SUCCESS; /* PKCS#1 1.5 section 6 requires modulus to have at least 12 octets. * We actually require more (for security). */ if (this->k < 512 / BITS_PER_BYTE) { DBG1(DBG_LIB, "key shorter than 512 bits"); return FAILED; } /* we picked a max modulus size to simplify buffer allocation */ if (this->k > 8192 / BITS_PER_BYTE) { DBG1(DBG_LIB, "key larger than 8192 bits"); return FAILED; } mpz_init(u); mpz_init(p1); mpz_init(q1); /* precompute p1 = p-1 and q1 = q-1 */ mpz_sub_ui(p1, this->p, 1); mpz_sub_ui(q1, this->q, 1); /* check that n == p * q */ mpz_mul(u, this->p, this->q); if (mpz_cmp(u, this->n) != 0) { status = FAILED; } /* check that e divides neither p-1 nor q-1 */ mpz_mod(u, p1, this->e); if (mpz_cmp_ui(u, 0) == 0) { status = FAILED; } mpz_mod(u, q1, this->e); if (mpz_cmp_ui(u, 0) == 0) { status = FAILED; } /* check that d is e^-1 (mod lcm(p-1, q-1)) */ /* see PKCS#1v2, aka RFC 2437, for the "lcm" */ mpz_lcm(this->m, p1, q1); mpz_mul(u, *this->d, this->e); mpz_mod(u, u, this->m); if (mpz_cmp_ui(u, 1) != 0) { status = FAILED; } /* check that exp1 is d mod (p-1) */ mpz_mod(u, *this->d, p1); if (mpz_cmp(u, this->exp1) != 0) { status = FAILED; } /* check that exp2 is d mod (q-1) */ mpz_mod(u, *this->d, q1); if (mpz_cmp(u, this->exp2) != 0) { status = FAILED; } /* check that coeff is (q^-1) mod p */ mpz_mul(u, this->coeff, this->q); mpz_mod(u, u, this->p); if (mpz_cmp_ui(u, 1) != 0) { status = FAILED; } mpz_clear_sensitive(u); mpz_clear_sensitive(p1); mpz_clear_sensitive(q1); if (status != SUCCESS) { DBG1(DBG_LIB, "key integrity tests failed"); } return status; } /** * Internal generic constructor */ static private_gmp_rsa_private_key_t *gmp_rsa_private_key_create_empty(void) { private_gmp_rsa_private_key_t *this; INIT(this, .public = { .key = { .get_type = _get_type, .sign = _sign, .decrypt = _decrypt, .get_keysize = _get_keysize, .get_public_key = _get_public_key, .equals = private_key_equals, .belongs_to = private_key_belongs_to, .get_fingerprint = _get_fingerprint, .has_fingerprint = private_key_has_fingerprint, .get_encoding = _get_encoding, .get_ref = _get_ref, .destroy = _destroy, }, }, .threshold = 1, .ref = 1, ); return this; } /** * See header. */ gmp_rsa_private_key_t *gmp_rsa_private_key_gen(key_type_t type, va_list args) { private_gmp_rsa_private_key_t *this; u_int key_size = 0, shares = 0, threshold = 1; bool safe_prime = FALSE, rng_failed = FALSE, invert_failed = FALSE; mpz_t p, q, p1, q1, d; ; while (TRUE) { switch (va_arg(args, builder_part_t)) { case BUILD_KEY_SIZE: key_size = va_arg(args, u_int); continue; case BUILD_SAFE_PRIMES: safe_prime = TRUE; continue; case BUILD_SHARES: shares = va_arg(args, u_int); continue; case BUILD_THRESHOLD: threshold = va_arg(args, u_int); continue; case BUILD_END: break; default: return NULL; } break; } if (!key_size) { return NULL; } key_size = key_size / BITS_PER_BYTE; /* Get values of primes p and q */ if (compute_prime(key_size/2, safe_prime, &p, &p1) != SUCCESS) { return NULL; } if (compute_prime(key_size/2, safe_prime, &q, &q1) != SUCCESS) { mpz_clear(p); mpz_clear(p1); return NULL; } /* Swapping Primes so p is larger then q */ if (mpz_cmp(p, q) < 0) { mpz_swap(p, q); mpz_swap(p1, q1); } /* Create and initialize RSA private key object */ this = gmp_rsa_private_key_create_empty(); this->shares = shares; this->threshold = threshold; this->d = malloc(threshold * sizeof(mpz_t)); *this->p = *p; *this->q = *q; mpz_init_set_ui(this->e, PUBLIC_EXPONENT); mpz_init(this->n); mpz_init(this->m); mpz_init(this->exp1); mpz_init(this->exp2); mpz_init(this->coeff); mpz_init(this->v); mpz_init(d); mpz_mul(this->n, p, q); /* n = p*q */ mpz_lcm(this->m, p1, q1); /* m = lcm(p-1,q-1) */ mpz_invert(d, this->e, this->m); /* e has an inverse mod m */ mpz_mod(this->exp1, d, p1); /* exp1 = d mod p-1 */ mpz_mod(this->exp2, d, q1); /* exp2 = d mod q-1 */ mpz_invert(this->coeff, q, p); /* coeff = q^-1 mod p */ invert_failed = mpz_cmp_ui(this->m, 0) == 0 || mpz_cmp_ui(this->coeff, 0) == 0; /* store secret exponent d */ (*this->d)[0] = *d; /* generate and store random coefficients of secret sharing polynomial */ if (threshold > 1) { rng_t *rng; chunk_t random_bytes; mpz_t u; int i; rng = lib->crypto->create_rng(lib->crypto, RNG_TRUE); mpz_init(u); for (i = 1; i < threshold; i++) { mpz_init(d); if (!rng->allocate_bytes(rng, key_size, &random_bytes)) { rng_failed = TRUE; continue; } mpz_import(d, random_bytes.len, 1, 1, 1, 0, random_bytes.ptr); mpz_mod(d, d, this->m); (*this->d)[i] = *d; chunk_clear(&random_bytes); } /* generate verification key v as a square number */ do { if (!rng->allocate_bytes(rng, key_size, &random_bytes)) { rng_failed = TRUE; break; } mpz_import(this->v, random_bytes.len, 1, 1, 1, 0, random_bytes.ptr); mpz_mul(this->v, this->v, this->v); mpz_mod(this->v, this->v, this->n); mpz_gcd(u, this->v, this->n); chunk_free(&random_bytes); } while (mpz_cmp_ui(u, 1) != 0); mpz_clear(u); rng->destroy(rng); } mpz_clear_sensitive(p1); mpz_clear_sensitive(q1); if (rng_failed || invert_failed) { DBG1(DBG_LIB, "rsa key generation failed"); destroy(this); return NULL; } /* set key size in bytes */ this->k = key_size; return &this->public; } /** * Recover the primes from n, e and d using the algorithm described in * Appendix C of NIST SP 800-56B. */ static bool calculate_pq(private_gmp_rsa_private_key_t *this) { gmp_randstate_t rstate; mpz_t k, r, g, y, n1, x; int i, t, j; bool success = FALSE; gmp_randinit_default(rstate); mpz_inits(k, r, g, y, n1, x, NULL); /* k = (d * e) - 1 */ mpz_mul(k, *this->d, this->e); mpz_sub_ui(k, k, 1); if (mpz_odd_p(k)) { goto error; } /* k = 2^t * r, where r is the largest odd integer dividing k, and t >= 1 */ mpz_set(r, k); for (t = 0; !mpz_odd_p(r); t++) { /* r = r/2 */ mpz_divexact_ui(r, r, 2); } /* we need n-1 below */ mpz_sub_ui(n1, this->n, 1); for (i = 0; i < 100; i++) { /* generate random integer g in [0, n-1] */ mpz_urandomm(g, rstate, this->n); /* y = g^r mod n */ mpz_powm_sec(y, g, r, this->n); /* try again if y == 1 or y == n-1 */ if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, n1) == 0) { continue; } for (j = 0; j < t; j++) { /* x = y^2 mod n */ mpz_powm_ui(x, y, 2, this->n); /* stop if x == 1 */ if (mpz_cmp_ui(x, 1) == 0) { goto done; } /* retry with new g if x = n-1 */ if (mpz_cmp(x, n1) == 0) { break; } /* y = x */ mpz_set(y, x); } } goto error; done: /* p = gcd(y-1, n) */ mpz_sub_ui(y, y, 1); mpz_gcd(this->p, y, this->n); /* q = n/p */ mpz_divexact(this->q, this->n, this->p); success = TRUE; error: mpz_clear_sensitive(k); mpz_clear_sensitive(r); mpz_clear_sensitive(g); mpz_clear_sensitive(y); mpz_clear_sensitive(x); mpz_clear(n1); gmp_randclear(rstate); return success; } /** * See header. */ gmp_rsa_private_key_t *gmp_rsa_private_key_load(key_type_t type, va_list args) { private_gmp_rsa_private_key_t *this; chunk_t n, e, d, p, q, exp1, exp2, coeff; n = e = d = p = q = exp1 = exp2 = coeff = chunk_empty; while (TRUE) { switch (va_arg(args, builder_part_t)) { case BUILD_RSA_MODULUS: n = va_arg(args, chunk_t); continue; case BUILD_RSA_PUB_EXP: e = va_arg(args, chunk_t); continue; case BUILD_RSA_PRIV_EXP: d = va_arg(args, chunk_t); continue; case BUILD_RSA_PRIME1: p = va_arg(args, chunk_t); continue; case BUILD_RSA_PRIME2: q = va_arg(args, chunk_t); continue; case BUILD_RSA_EXP1: exp1 = va_arg(args, chunk_t); continue; case BUILD_RSA_EXP2: exp2 = va_arg(args, chunk_t); continue; case BUILD_RSA_COEFF: coeff = va_arg(args, chunk_t); continue; case BUILD_END: break; default: return NULL; } break; } this = gmp_rsa_private_key_create_empty(); this->d = malloc(sizeof(mpz_t)); mpz_init(this->n); mpz_init(this->e); mpz_init(*this->d); mpz_init(this->p); mpz_init(this->q); mpz_init(this->m); mpz_init(this->exp1); mpz_init(this->exp2); mpz_init(this->coeff); mpz_init(this->v); mpz_import(this->n, n.len, 1, 1, 1, 0, n.ptr); mpz_import(this->e, e.len, 1, 1, 1, 0, e.ptr); mpz_import(*this->d, d.len, 1, 1, 1, 0, d.ptr); if (p.len) { mpz_import(this->p, p.len, 1, 1, 1, 0, p.ptr); } if (q.len) { mpz_import(this->q, q.len, 1, 1, 1, 0, q.ptr); } if (!p.len && !q.len) { /* p and q missing in key, recalculate from n, e and d */ if (!calculate_pq(this)) { destroy(this); return NULL; } } else if (!p.len) { /* p missing in key, recalculate: p = n / q */ mpz_divexact(this->p, this->n, this->q); } else if (!q.len) { /* q missing in key, recalculate: q = n / p */ mpz_divexact(this->q, this->n, this->p); } if (!exp1.len) { /* exp1 missing in key, recalculate: exp1 = d mod (p-1) */ mpz_sub_ui(this->exp1, this->p, 1); mpz_mod(this->exp1, *this->d, this->exp1); } else { mpz_import(this->exp1, exp1.len, 1, 1, 1, 0, exp1.ptr); } if (!exp2.len) { /* exp2 missing in key, recalculate: exp2 = d mod (q-1) */ mpz_sub_ui(this->exp2, this->q, 1); mpz_mod(this->exp2, *this->d, this->exp2); } else { mpz_import(this->exp2, exp2.len, 1, 1, 1, 0, exp2.ptr); } if (!coeff.len) { /* coeff missing in key, recalculate: coeff = q^-1 mod p */ mpz_invert(this->coeff, this->q, this->p); } else { mpz_import(this->coeff, coeff.len, 1, 1, 1, 0, coeff.ptr); } this->k = (mpz_sizeinbase(this->n, 2) + 7) / BITS_PER_BYTE; if (check(this) != SUCCESS) { destroy(this); return NULL; } return &this->public; }