/* * Copyright (C) 2014 Andreas Steffen * HSR Hochschule fuer Technik Rapperswil * * Copyright (C) 2009-2013 Security Innovation * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include "ntru_poly.h" #include #include #include typedef struct private_ntru_poly_t private_ntru_poly_t; typedef struct indices_len_t indices_len_t; /** * Stores number of +1 and -1 coefficients */ struct indices_len_t { int p; int m; }; /** * Private data of an ntru_poly_t object. */ struct private_ntru_poly_t { /** * Public ntru_poly_t interface. */ ntru_poly_t public; /** * Ring dimension equal to the number of polynomial coefficients */ uint16_t N; /** * Large modulus */ uint16_t q; /** * Array containing the indices of the non-zero coefficients */ uint16_t *indices; /** * Number of indices of the non-zero coefficients */ size_t num_indices; /** * Number of sparse polynomials */ int num_polynomials; /** * Number of nonzero coefficients for up to 3 sparse polynomials */ indices_len_t indices_len[3]; }; METHOD(ntru_poly_t, get_size, size_t, private_ntru_poly_t *this) { return this->num_indices; } METHOD(ntru_poly_t, get_indices, uint16_t*, private_ntru_poly_t *this) { return this->indices; } /** * Multiplication of polynomial a with a sparse polynomial b given by * the indices of its +1 and -1 coefficients results in polynomial c. * This is a convolution operation */ static void ring_mult_i(uint16_t *a, indices_len_t len, uint16_t *indices, uint16_t N, uint16_t mod_q_mask, uint16_t *t, uint16_t *c) { int i, j, k; /* initialize temporary array t */ for (k = 0; k < N; k++) { t[k] = 0; } /* t[(i+k)%N] = sum i=0 through N-1 of a[i], for b[k] = -1 */ for (j = len.p; j < len.p + len.m; j++) { k = indices[j]; for (i = 0; k < N; ++i, ++k) { t[k] += a[i]; } for (k = 0; i < N; ++i, ++k) { t[k] += a[i]; } } /* t[(i+k)%N] = -(sum i=0 through N-1 of a[i] for b[k] = -1) */ for (k = 0; k < N; k++) { t[k] = -t[k]; } /* t[(i+k)%N] += sum i=0 through N-1 of a[i] for b[k] = +1 */ for (j = 0; j < len.p; j++) { k = indices[j]; for (i = 0; k < N; ++i, ++k) { t[k] += a[i]; } for (k = 0; i < N; ++i, ++k) { t[k] += a[i]; } } /* c = (a * b) mod q */ for (k = 0; k < N; k++) { c[k] = t[k] & mod_q_mask; } } METHOD(ntru_poly_t, get_array, void, private_ntru_poly_t *this, uint16_t *array) { uint16_t *t, *bi; uint16_t mod_q_mask = this->q - 1; indices_len_t len; int i; /* form polynomial F or F1 */ memset(array, 0x00, this->N * sizeof(uint16_t)); bi = this->indices; len = this->indices_len[0]; for (i = 0; i < len.p + len.m; i++) { array[bi[i]] = (i < len.p) ? 1 : mod_q_mask; } if (this->num_polynomials == 3) { /* allocate temporary array t */ t = malloc(this->N * sizeof(uint16_t)); /* form F1 * F2 */ bi += len.p + len.m; len = this->indices_len[1]; ring_mult_i(array, len, bi, this->N, mod_q_mask, t, array); /* form (F1 * F2) + F3 */ bi += len.p + len.m; len = this->indices_len[2]; for (i = 0; i < len.p + len.m; i++) { if (i < len.p) { array[bi[i]] += 1; } else { array[bi[i]] -= 1; } array[bi[i]] &= mod_q_mask; } free(t); } } METHOD(ntru_poly_t, ring_mult, void, private_ntru_poly_t *this, uint16_t *a, uint16_t *c) { uint16_t *t1, *t2; uint16_t *bi = this->indices; uint16_t mod_q_mask = this->q - 1; int i; /* allocate temporary array t1 */ t1 = malloc(this->N * sizeof(uint16_t)); if (this->num_polynomials == 1) { ring_mult_i(a, this->indices_len[0], bi, this->N, mod_q_mask, t1, c); } else { /* allocate temporary array t2 */ t2 = malloc(this->N * sizeof(uint16_t)); /* t1 = a * b1 */ ring_mult_i(a, this->indices_len[0], bi, this->N, mod_q_mask, t1, t1); /* t1 = (a * b1) * b2 */ bi += this->indices_len[0].p + this->indices_len[0].m; ring_mult_i(t1, this->indices_len[1], bi, this->N, mod_q_mask, t2, t1); /* t2 = a * b3 */ bi += this->indices_len[1].p + this->indices_len[1].m; ring_mult_i(a, this->indices_len[2], bi, this->N, mod_q_mask, t2, t2); /* c = (a * b1 * b2) + (a * b3) */ for (i = 0; i < this->N; i++) { c[i] = (t1[i] + t2[i]) & mod_q_mask; } free(t2); } free(t1); } METHOD(ntru_poly_t, destroy, void, private_ntru_poly_t *this) { memwipe(this->indices, sizeof(uint16_t) * get_size(this)); free(this->indices); free(this); } /** * Creates an empty ntru_poly_t object with space allocated for indices */ static private_ntru_poly_t* ntru_poly_create(uint16_t N, uint16_t q, uint32_t indices_len_p, uint32_t indices_len_m, bool is_product_form) { private_ntru_poly_t *this; int n; INIT(this, .public = { .get_size = _get_size, .get_indices = _get_indices, .get_array = _get_array, .ring_mult = _ring_mult, .destroy = _destroy, }, .N = N, .q = q, ); if (is_product_form) { this->num_polynomials = 3; for (n = 0; n < 3; n++) { this->indices_len[n].p = 0xff & indices_len_p; this->indices_len[n].m = 0xff & indices_len_m; this->num_indices += this->indices_len[n].p + this->indices_len[n].m; indices_len_p >>= 8; indices_len_m >>= 8; } } else { this->num_polynomials = 1; this->indices_len[0].p = indices_len_p; this->indices_len[0].m = indices_len_m; this->num_indices = indices_len_p + indices_len_m; } this->indices = malloc(sizeof(uint16_t) * this->num_indices); return this; } /* * Described in header. */ ntru_poly_t *ntru_poly_create_from_seed(hash_algorithm_t alg, chunk_t seed, uint8_t c_bits, uint16_t N, uint16_t q, uint32_t indices_len_p, uint32_t indices_len_m, bool is_product_form) { private_ntru_poly_t *this; int n, num_indices, index_i = 0; uint32_t index, limit; uint8_t *used; mgf1_bitspender_t *bitspender; bitspender = mgf1_bitspender_create(alg, seed, TRUE); if (!bitspender) { return NULL; } this = ntru_poly_create(N, q, indices_len_p, indices_len_m, is_product_form); used = malloc(N); limit = N * ((1 << c_bits) / N); /* generate indices for all polynomials */ for (n = 0; n < this->num_polynomials; n++) { memset(used, 0, N); num_indices = this->indices_len[n].p + this->indices_len[n].m; /* generate indices for a single polynomial */ while (num_indices) { /* generate a random candidate index with a size of c_bits */ do { if (!bitspender->get_bits(bitspender, c_bits, &index)) { bitspender->destroy(bitspender); destroy(this); free(used); return NULL; } } while (index >= limit); /* form index and check if unique */ index %= N; if (!used[index]) { used[index] = 1; this->indices[index_i++] = index; num_indices--; } } } bitspender->destroy(bitspender); free(used); return &this->public; } /* * Described in header. */ ntru_poly_t *ntru_poly_create_from_data(uint16_t *data, uint16_t N, uint16_t q, uint32_t indices_len_p, uint32_t indices_len_m, bool is_product_form) { private_ntru_poly_t *this; int i; this = ntru_poly_create(N, q, indices_len_p, indices_len_m, is_product_form); for (i = 0; i < this->num_indices; i++) { this->indices[i] = data[i]; } return &this->public; } EXPORT_FUNCTION_FOR_TESTS(ntru, ntru_poly_create_from_seed); EXPORT_FUNCTION_FOR_TESTS(ntru, ntru_poly_create_from_data);