/* * Copyright (C) 2005-2006 Martin Willi * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * * Ported from Steve Reid's implementation * "SHA1 in C" found in strongSwan. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * $Id: sha1_hasher.c 3619 2008-03-19 14:02:52Z martin $ */ #include #include #include "sha1_hasher.h" /* * ugly macro stuff */ #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) #if BYTE_ORDER == LITTLE_ENDIAN #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) |(rol(block->l[i],8)&0x00FF00FF)) #elif BYTE_ORDER == BIG_ENDIAN #define blk0(i) block->l[i] #else #error "Endianness not defined!" #endif #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] ^block->l[(i+2)&15]^block->l[i&15],1)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); typedef struct private_sha1_hasher_t private_sha1_hasher_t; typedef struct private_sha1_keyed_prf_t private_sha1_keyed_prf_t; /** * Private data structure with hasing context. */ struct private_sha1_hasher_t { /** * Public interface for this hasher. */ sha1_hasher_t public; /* * State of the hasher. */ u_int32_t state[5]; u_int32_t count[2]; u_int8_t buffer[64]; }; /** * Private data structure with keyed prf context. */ struct private_sha1_keyed_prf_t { /** * public prf interface */ sha1_keyed_prf_t public; /** * internal used hasher */ private_sha1_hasher_t *hasher; }; /* * Hash a single 512-bit block. This is the core of the algorithm. * */ static void SHA1Transform(u_int32_t state[5], const unsigned char buffer[64]) { u_int32_t a, b, c, d, e; typedef union { u_int8_t c[64]; u_int32_t l[16]; } CHAR64LONG16; CHAR64LONG16 block[1]; /* use array to appear as a pointer */ memcpy(block, buffer, 64); /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; memset(block, '\0', sizeof(block)); } /* * Run your data through this. */ static void SHA1Update(private_sha1_hasher_t* this, u_int8_t *data, u_int32_t len) { u_int32_t i; u_int32_t j; j = this->count[0]; if ((this->count[0] += len << 3) < j) { this->count[1]++; } this->count[1] += (len>>29); j = (j >> 3) & 63; if ((j + len) > 63) { memcpy(&this->buffer[j], data, (i = 64-j)); SHA1Transform(this->state, this->buffer); for ( ; i + 63 < len; i += 64) { SHA1Transform(this->state, &data[i]); } j = 0; } else { i = 0; } memcpy(&this->buffer[j], &data[i], len - i); } /* * Add padding and return the message digest. */ static void SHA1Final(private_sha1_hasher_t *this, u_int8_t *digest) { u_int32_t i; u_int8_t finalcount[8]; u_int8_t c; for (i = 0; i < 8; i++) { finalcount[i] = (u_int8_t)((this->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } c = 0200; SHA1Update(this, &c, 1); while ((this->count[0] & 504) != 448) { c = 0000; SHA1Update(this, &c, 1); } SHA1Update(this, finalcount, 8); /* Should cause a SHA1Transform() */ for (i = 0; i < 20; i++) { digest[i] = (u_int8_t)((this->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } } /** * Implementation of hasher_t.reset. */ static void reset(private_sha1_hasher_t *this) { this->state[0] = 0x67452301; this->state[1] = 0xEFCDAB89; this->state[2] = 0x98BADCFE; this->state[3] = 0x10325476; this->state[4] = 0xC3D2E1F0; this->count[0] = 0; this->count[1] = 0; } /** * Implementation of hasher_t.get_hash. */ static void get_hash(private_sha1_hasher_t *this, chunk_t chunk, u_int8_t *buffer) { SHA1Update(this, chunk.ptr, chunk.len); if (buffer != NULL) { SHA1Final(this, buffer); reset(this); } } /** * Implementation of hasher_t.allocate_hash. */ static void allocate_hash(private_sha1_hasher_t *this, chunk_t chunk, chunk_t *hash) { SHA1Update(this, chunk.ptr, chunk.len); if (hash != NULL) { hash->ptr = malloc(HASH_SIZE_SHA1); hash->len = HASH_SIZE_SHA1; SHA1Final(this, hash->ptr); reset(this); } } /** * Implementation of hasher_t.get_hash_size. */ static size_t get_hash_size(private_sha1_hasher_t *this) { return HASH_SIZE_SHA1; } /** * Implementation of hasher_t.destroy. */ static void destroy(private_sha1_hasher_t *this) { free(this); } /* * Described in header. */ sha1_hasher_t *sha1_hasher_create(hash_algorithm_t algo) { private_sha1_hasher_t *this; if (algo != HASH_SHA1) { return NULL; } this = malloc_thing(private_sha1_hasher_t); this->public.hasher_interface.get_hash = (void (*) (hasher_t*, chunk_t, u_int8_t*))get_hash; this->public.hasher_interface.allocate_hash = (void (*) (hasher_t*, chunk_t, chunk_t*))allocate_hash; this->public.hasher_interface.get_hash_size = (size_t (*) (hasher_t*))get_hash_size; this->public.hasher_interface.reset = (void (*) (hasher_t*))reset; this->public.hasher_interface.destroy = (void (*) (hasher_t*))destroy; /* initialize */ reset(this); return &(this->public); } /** * Implementation of prf_t.get_bytes. */ static void get_bytes(private_sha1_keyed_prf_t *this, chunk_t seed, u_int8_t *bytes) { u_int32_t *hash = (u_int32_t*)bytes; SHA1Update(this->hasher, seed.ptr, seed.len); hash[0] = htonl(this->hasher->state[0]); hash[1] = htonl(this->hasher->state[1]); hash[2] = htonl(this->hasher->state[2]); hash[3] = htonl(this->hasher->state[3]); hash[4] = htonl(this->hasher->state[4]); } /** * Implementation of prf_t.get_block_size. */ static size_t get_block_size(private_sha1_keyed_prf_t *this) { return HASH_SIZE_SHA1; } /** * Implementation of prf_t.allocate_bytes. */ static void allocate_bytes(private_sha1_keyed_prf_t *this, chunk_t seed, chunk_t *chunk) { *chunk = chunk_alloc(HASH_SIZE_SHA1); get_bytes(this, seed, chunk->ptr); } /** * Implementation of prf_t.get_key_size. */ static size_t get_key_size(private_sha1_keyed_prf_t *this) { return sizeof(this->hasher->state); } /** * Implementation of prf_t.set_key. */ static void set_key(private_sha1_keyed_prf_t *this, chunk_t key) { int i, rounds; u_int32_t *iv = (u_int32_t*)key.ptr; reset(this->hasher); rounds = min(key.len/sizeof(u_int32_t), sizeof(this->hasher->state)); for (i = 0; i < rounds; i++) { this->hasher->state[i] ^= htonl(iv[i]); } } /** * Implementation of prf_t.destroy. */ static void destroy_p(private_sha1_keyed_prf_t *this) { destroy(this->hasher); free(this); } /** * see header */ sha1_keyed_prf_t *sha1_keyed_prf_create(pseudo_random_function_t algo) { private_sha1_keyed_prf_t *this; if (algo != PRF_KEYED_SHA1) { return NULL; } this = malloc_thing(private_sha1_keyed_prf_t); this->public.prf_interface.get_bytes = (void (*) (prf_t *,chunk_t,u_int8_t*))get_bytes; this->public.prf_interface.allocate_bytes = (void (*) (prf_t*,chunk_t,chunk_t*))allocate_bytes; this->public.prf_interface.get_block_size = (size_t (*) (prf_t*))get_block_size; this->public.prf_interface.get_key_size = (size_t (*) (prf_t*))get_key_size; this->public.prf_interface.set_key = (void (*) (prf_t *,chunk_t))set_key; this->public.prf_interface.destroy = (void (*) (prf_t *))destroy_p; this->hasher = (private_sha1_hasher_t*)sha1_hasher_create(HASH_SHA1); return &(this->public); }