/* * Copyright (C) 2008 Martin Willi * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General xcbc License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General xcbc License * for more details. */ #include #include "xcbc.h" #include typedef struct private_xcbc_t private_xcbc_t; /** * Private data of a xcbc_t object. * * The variable names are the same as in the RFC. */ struct private_xcbc_t { /** * Public xcbc_t interface. */ xcbc_t xcbc; /** * Block size, in bytes */ u_int8_t b; /** * crypter using k1 */ crypter_t *k1; /** * k2 */ u_int8_t *k2; /** * k3 */ u_int8_t *k3; /** * E */ u_int8_t *e; /** * remaining, unprocessed bytes in append mode */ u_int8_t *remaining; /** * number of bytes in remaining */ int remaining_bytes; /** * TRUE if we have zero bytes to xcbc in final() */ bool zero; }; /** * xcbc supplied data, but do not run final operation */ static void update(private_xcbc_t *this, chunk_t data) { chunk_t iv; if (data.len) { this->zero = FALSE; } if (this->remaining_bytes + data.len <= this->b) { /* no complete block, just copy into remaining */ memcpy(this->remaining + this->remaining_bytes, data.ptr, data.len); this->remaining_bytes += data.len; return; } iv = chunk_alloca(this->b); memset(iv.ptr, 0, iv.len); /* (3) For each block M[i], where i = 1 ... n-1: * XOR M[i] with E[i-1], then encrypt the result with Key K1, * yielding E[i]. */ /* append data to remaining bytes, process block M[1] */ memcpy(this->remaining + this->remaining_bytes, data.ptr, this->b - this->remaining_bytes); data = chunk_skip(data, this->b - this->remaining_bytes); memxor(this->e, this->remaining, this->b); this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); /* process blocks M[2] ... M[n-1] */ while (data.len > this->b) { memcpy(this->remaining, data.ptr, this->b); data = chunk_skip(data, this->b); memxor(this->e, this->remaining, this->b); this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); } /* store remaining bytes of block M[n] */ memcpy(this->remaining, data.ptr, data.len); this->remaining_bytes = data.len; } /** * run last round, data is in this->e */ static void final(private_xcbc_t *this, u_int8_t *out) { chunk_t iv; iv = chunk_alloca(this->b); memset(iv.ptr, 0, iv.len); /* (4) For block M[n]: */ if (this->remaining_bytes == this->b && !this->zero) { /* a) If the blocksize of M[n] is 128 bits: * XOR M[n] with E[n-1] and Key K2, then encrypt the result with * Key K1, yielding E[n]. */ memxor(this->e, this->remaining, this->b); memxor(this->e, this->k2, this->b); this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); } else { /* b) If the blocksize of M[n] is less than 128 bits: * * i) Pad M[n] with a single "1" bit, followed by the number of * "0" bits (possibly none) required to increase M[n]'s * blocksize to 128 bits. */ if (this->remaining_bytes < this->b) { this->remaining[this->remaining_bytes] = 0x80; while (++this->remaining_bytes < this->b) { this->remaining[this->remaining_bytes] = 0x00; } } /* ii) XOR M[n] with E[n-1] and Key K3, then encrypt the result * with Key K1, yielding E[n]. */ memxor(this->e, this->remaining, this->b); memxor(this->e, this->k3, this->b); this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL); } memcpy(out, this->e, this->b); /* (2) Define E[0] = 0x00000000000000000000000000000000 */ memset(this->e, 0, this->b); this->remaining_bytes = 0; this->zero = TRUE; } /** * Implementation of xcbc_t.get_mac. */ static void get_mac(private_xcbc_t *this, chunk_t data, u_int8_t *out) { /* update E, do not process last block */ update(this, data); if (out) { /* if not in append mode, process last block and output result */ final(this, out); } } /** * Implementation of xcbc_t.get_block_size. */ static size_t get_block_size(private_xcbc_t *this) { return this->b; } /** * Implementation of xcbc_t.set_key. */ static void set_key(private_xcbc_t *this, chunk_t key) { chunk_t iv, k1, lengthened; /* we support variable keys from RFC4434 */ if (key.len == this->b) { lengthened = key; } else if (key.len < this->b) { /* pad short keys */ lengthened = chunk_alloca(this->b); memset(lengthened.ptr, 0, lengthened.len); memcpy(lengthened.ptr, key.ptr, key.len); } else { /* shorten key using xcbc */ lengthened = chunk_alloca(this->b); memset(lengthened.ptr, 0, lengthened.len); set_key(this, lengthened); get_mac(this, key, lengthened.ptr); } k1 = chunk_alloca(this->b); iv = chunk_alloca(this->b); memset(iv.ptr, 0, iv.len); /* * (1) Derive 3 128-bit keys (K1, K2 and K3) from the 128-bit secret * key K, as follows: * K1 = 0x01010101010101010101010101010101 encrypted with Key K * K2 = 0x02020202020202020202020202020202 encrypted with Key K * K3 = 0x03030303030303030303030303030303 encrypted with Key K */ this->k1->set_key(this->k1, lengthened); memset(this->k2, 0x02, this->b); this->k1->encrypt(this->k1, chunk_create(this->k2, this->b), iv, NULL); memset(this->k3, 0x03, this->b); this->k1->encrypt(this->k1, chunk_create(this->k3, this->b), iv, NULL); memset(k1.ptr, 0x01, this->b); this->k1->encrypt(this->k1, k1, iv, NULL); this->k1->set_key(this->k1, k1); } /** * Implementation of xcbc_t.destroy. */ static void destroy(private_xcbc_t *this) { this->k1->destroy(this->k1); free(this->k2); free(this->k3); free(this->e); free(this->remaining); free(this); } /* * Described in header */ xcbc_t *xcbc_create(encryption_algorithm_t algo, size_t key_size) { private_xcbc_t *this; crypter_t *crypter; crypter = lib->crypto->create_crypter(lib->crypto, algo, key_size); if (!crypter) { return NULL; } /* input and output of crypter must be equal for xcbc */ if (crypter->get_block_size(crypter) != key_size) { crypter->destroy(crypter); return NULL; } this = malloc_thing(private_xcbc_t); this->xcbc.get_mac = (void (*)(xcbc_t *,chunk_t,u_int8_t*))get_mac; this->xcbc.get_block_size = (size_t (*)(xcbc_t *))get_block_size; this->xcbc.set_key = (void (*)(xcbc_t *,chunk_t))set_key; this->xcbc.destroy = (void (*)(xcbc_t *))destroy; this->b = crypter->get_block_size(crypter); this->k1 = crypter; this->k2 = malloc(this->b); this->k3 = malloc(this->b); this->e = malloc(this->b); memset(this->e, 0, this->b); this->remaining = malloc(this->b); this->remaining_bytes = 0; this->zero = TRUE; return &this->xcbc; }