/* * Copyright (C) 2008-2010 Tobias Brunner * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include "hashtable.h" /** The maximum capacity of the hash table (MUST be a power of 2) */ #define MAX_CAPACITY (1 << 30) typedef struct pair_t pair_t; /** * This pair holds a pointer to the key and value it represents. */ struct pair_t { /** * Key of a hash table item. */ void *key; /** * Value of a hash table item. */ void *value; /** * Cached hash (used in case of a resize). */ u_int hash; }; /** * Creates an empty pair object. */ pair_t *pair_create(void *key, void *value, u_int hash) { pair_t *this; INIT(this, .key = key, .value = value, .hash = hash, ); return this; } typedef struct private_hashtable_t private_hashtable_t; /** * Private data of a hashtable_t object. * */ struct private_hashtable_t { /** * Public part of hash table. */ hashtable_t public; /** * The number of items in the hash table. */ u_int count; /** * The current capacity of the hash table (always a power of 2). */ u_int capacity; /** * The current mask to calculate the row index (capacity - 1). */ u_int mask; /** * The load factor. */ float load_factor; /** * The actual table. */ linked_list_t **table; /** * The hashing function. */ hashtable_hash_t hash; /** * The equality function. */ hashtable_equals_t equals; }; typedef struct private_enumerator_t private_enumerator_t; /** * hash table enumerator implementation */ struct private_enumerator_t { /** * implements enumerator interface */ enumerator_t enumerator; /** * associated hash table */ private_hashtable_t *table; /** * current row index */ u_int row; /** * current pair */ pair_t *pair; /** * enumerator for the current row */ enumerator_t *current; }; /** * Compare a pair in a list with the given key. */ static inline bool pair_equals(pair_t *pair, private_hashtable_t *this, void *key) { return this->equals(key, pair->key); } /** * This function returns the next-highest power of two for the given number. * The algorithm works by setting all bits on the right-hand side of the most * significant 1 to 1 and then increments the whole number so it rolls over * to the nearest power of two. Note: returns 0 for n == 0 */ static u_int get_nearest_powerof2(u_int n) { u_int i; --n; for (i = 1; i < sizeof(u_int) * 8; i <<= 1) { n |= n >> i; } return ++n; } /** * Init hash table parameters */ static void init_hashtable(private_hashtable_t *this, u_int capacity) { capacity = max(1, min(capacity, MAX_CAPACITY)); this->capacity = get_nearest_powerof2(capacity); this->mask = this->capacity - 1; this->load_factor = 0.75; this->table = calloc(this->capacity, sizeof(linked_list_t*)); } /** * Double the size of the hash table and rehash all the elements. */ static void rehash(private_hashtable_t *this) { linked_list_t **old_table; u_int row, old_capacity; if (this->capacity < MAX_CAPACITY) { return; } old_capacity = this->capacity; old_table = this->table; init_hashtable(this, old_capacity << 1); for (row = 0; row < old_capacity; row++) { enumerator_t *enumerator; linked_list_t *list, *new_list; pair_t *pair; u_int new_row; list = old_table[row]; if (list) { enumerator = list->create_enumerator(list); while (enumerator->enumerate(enumerator, &pair)) { new_row = pair->hash & this->mask; list->remove_at(list, enumerator); new_list = this->table[new_row]; if (!new_list) { new_list = this->table[new_row] = linked_list_create(); } new_list->insert_last(new_list, pair); } enumerator->destroy(enumerator); list->destroy(list); } } free(old_table); } METHOD(hashtable_t, put, void*, private_hashtable_t *this, void *key, void *value) { void *old_value = NULL; linked_list_t *list; u_int hash; u_int row; hash = this->hash(key); row = hash & this->mask; list = this->table[row]; if (list) { enumerator_t *enumerator; pair_t *pair; enumerator = list->create_enumerator(list); while (enumerator->enumerate(enumerator, &pair)) { if (pair_equals(pair, this, key)) { old_value = pair->value; pair->value = value; break; } } enumerator->destroy(enumerator); } else { list = this->table[row] = linked_list_create(); } if (!old_value) { list->insert_last(list, pair_create(key, value, hash)); this->count++; } if (this->count >= this->capacity * this->load_factor) { rehash(this); } return old_value; } METHOD(hashtable_t, get, void*, private_hashtable_t *this, void *key) { void *value = NULL; linked_list_t *list; pair_t *pair; list = this->table[this->hash(key) & this->mask]; if (list) { if (list->find_first(list, (linked_list_match_t)pair_equals, (void**)&pair, this, key) == SUCCESS) { value = pair->value; } } return value; } METHOD(hashtable_t, remove_, void*, private_hashtable_t *this, void *key) { void *value = NULL; linked_list_t *list; list = this->table[this->hash(key) & this->mask]; if (list) { enumerator_t *enumerator; pair_t *pair; enumerator = list->create_enumerator(list); while (enumerator->enumerate(enumerator, &pair)) { if (pair_equals(pair, this, key)) { list->remove_at(list, enumerator); value = pair->value; this->count--; free(pair); break; } } enumerator->destroy(enumerator); } return value; } METHOD(hashtable_t, remove_at, void, private_hashtable_t *this, private_enumerator_t *enumerator) { if (enumerator->table == this && enumerator->current) { linked_list_t *list; list = this->table[enumerator->row]; if (list) { list->remove_at(list, enumerator->current); free(enumerator->pair); this->count--; } } } METHOD(hashtable_t, get_count, u_int, private_hashtable_t *this) { return this->count; } METHOD(enumerator_t, enumerate, bool, private_enumerator_t *this, void **key, void **value) { while (this->row < this->table->capacity) { if (this->current) { if (this->current->enumerate(this->current, &this->pair)) { if (key) { *key = this->pair->key; } if (value) { *value = this->pair->value; } return TRUE; } this->current->destroy(this->current); this->current = NULL; } else { linked_list_t *list; list = this->table->table[this->row]; if (list) { this->current = list->create_enumerator(list); continue; } } this->row++; } return FALSE; } METHOD(enumerator_t, enumerator_destroy, void, private_enumerator_t *this) { if (this->current) { this->current->destroy(this->current); } free(this); } METHOD(hashtable_t, create_enumerator, enumerator_t*, private_hashtable_t *this) { private_enumerator_t *enumerator; INIT(enumerator, .enumerator = { .enumerate = (void*)_enumerate, .destroy = (void*)_enumerator_destroy, }, .table = this, ); return &enumerator->enumerator; } METHOD(hashtable_t, destroy, void, private_hashtable_t *this) { linked_list_t *list; u_int row; for (row = 0; row < this->capacity; row++) { list = this->table[row]; if (list) { list->destroy_function(list, free); } } free(this->table); free(this); } /* * Described in header. */ hashtable_t *hashtable_create(hashtable_hash_t hash, hashtable_equals_t equals, u_int capacity) { private_hashtable_t *this; INIT(this, .public = { .put = _put, .get = _get, .remove = _remove_, .remove_at = (void*)_remove_at, .get_count = _get_count, .create_enumerator = _create_enumerator, .destroy = _destroy, }, .hash = hash, .equals = equals, ); init_hashtable(this, capacity); return &this->public; }