1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
|
/*
* Copyright (C) 2008 Martin Willi
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* $Id$
*/
#include "keymat.h"
#include <daemon.h>
#include <crypto/prf_plus.h>
typedef struct private_keymat_t private_keymat_t;
/**
* Private data of an keymat_t object.
*/
struct private_keymat_t {
/**
* Public keymat_t interface.
*/
keymat_t public;
/**
* IKE_SA Role, initiator or responder
*/
bool initiator;
/**
* inbound signer (verify)
*/
signer_t *signer_in;
/**
* outbound signer (sign)
*/
signer_t *signer_out;
/**
* inbound crypter (decrypt)
*/
crypter_t *crypter_in;
/**
* outbound crypter (encrypt)
*/
crypter_t *crypter_out;
/**
* General purpose PRF
*/
prf_t *prf;
/**
* Key to derive key material from for CHILD_SAs, rekeying
*/
chunk_t skd;
/**
* Key to build outging authentication data (SKp)
*/
chunk_t skp_build;
/**
* Key to verify incoming authentication data (SKp)
*/
chunk_t skp_verify;
};
typedef struct keylen_entry_t keylen_entry_t;
/**
* Implicit key length for an algorithm
*/
struct keylen_entry_t {
/** IKEv2 algorithm identifier */
int algo;
/** key length in bits */
int len;
};
#define END_OF_LIST -1
/**
* Keylen for encryption algos
*/
keylen_entry_t keylen_enc[] = {
{ENCR_DES, 64},
{ENCR_3DES, 192},
{END_OF_LIST, 0}
};
/**
* Keylen for integrity algos
*/
keylen_entry_t keylen_int[] = {
{AUTH_HMAC_MD5_96, 128},
{AUTH_HMAC_SHA1_96, 160},
{AUTH_HMAC_SHA2_256_128, 256},
{AUTH_HMAC_SHA2_384_192, 384},
{AUTH_HMAC_SHA2_512_256, 512},
{AUTH_AES_XCBC_96, 128},
{END_OF_LIST, 0}
};
/**
* Lookup key length of an algorithm
*/
static int lookup_keylen(keylen_entry_t *list, int algo)
{
while (list->algo != END_OF_LIST)
{
if (algo == list->algo)
{
return list->len;
}
list++;
}
return 0;
}
/**
* Implementation of keymat_t.create_dh
*/
static diffie_hellman_t* create_dh(private_keymat_t *this,
diffie_hellman_group_t group)
{
return lib->crypto->create_dh(lib->crypto, group);;
}
/**
* Implementation of keymat_t.derive_keys
*/
static bool derive_ike_keys(private_keymat_t *this, proposal_t *proposal,
diffie_hellman_t *dh, chunk_t nonce_i,
chunk_t nonce_r, ike_sa_id_t *id,
private_keymat_t *rekey)
{
chunk_t skeyseed, key, secret, full_nonce, fixed_nonce, prf_plus_seed;
chunk_t spi_i, spi_r;
crypter_t *crypter_i, *crypter_r;
signer_t *signer_i, *signer_r;
prf_plus_t *prf_plus;
u_int16_t alg, key_size;
spi_i = chunk_alloca(sizeof(u_int64_t));
spi_r = chunk_alloca(sizeof(u_int64_t));
if (dh->get_shared_secret(dh, &secret) != SUCCESS)
{
return FALSE;
}
/* Create SAs general purpose PRF first, we may use it here */
if (!proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION, &alg, NULL))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, PSEUDO_RANDOM_FUNCTION);
return FALSE;
}
this->prf = lib->crypto->create_prf(lib->crypto, alg);
if (this->prf == NULL)
{
DBG1(DBG_IKE, "%N %N not supported!",
transform_type_names, PSEUDO_RANDOM_FUNCTION,
pseudo_random_function_names, alg);
return FALSE;
}
DBG4(DBG_IKE, "shared Diffie Hellman secret %B", &secret);
/* full nonce is used as seed for PRF+ ... */
full_nonce = chunk_cat("cc", nonce_i, nonce_r);
/* but the PRF may need a fixed key which only uses the first bytes of
* the nonces. */
switch (alg)
{
case PRF_AES128_XCBC:
/* while rfc4434 defines variable keys for AES-XCBC, rfc3664 does
* not and therefore fixed key semantics apply to XCBC for key
* derivation. */
key_size = this->prf->get_key_size(this->prf)/2;
nonce_i.len = min(nonce_i.len, key_size);
nonce_r.len = min(nonce_r.len, key_size);
break;
default:
/* all other algorithms use variable key length, full nonce */
break;
}
fixed_nonce = chunk_cat("cc", nonce_i, nonce_r);
*((u_int64_t*)spi_i.ptr) = id->get_initiator_spi(id);
*((u_int64_t*)spi_r.ptr) = id->get_responder_spi(id);
prf_plus_seed = chunk_cat("ccc", full_nonce, spi_i, spi_r);
/* KEYMAT = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)
*
* if we are rekeying, SKEYSEED is built on another way
*/
if (rekey == NULL) /* not rekeying */
{
/* SKEYSEED = prf(Ni | Nr, g^ir) */
this->prf->set_key(this->prf, fixed_nonce);
this->prf->allocate_bytes(this->prf, secret, &skeyseed);
this->prf->set_key(this->prf, skeyseed);
prf_plus = prf_plus_create(this->prf, prf_plus_seed);
}
else
{
/* SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)
* use OLD SAs PRF functions for both prf_plus and prf */
secret = chunk_cat("mc", secret, full_nonce);
rekey->prf->set_key(rekey->prf, rekey->skd);
rekey->prf->allocate_bytes(rekey->prf, secret, &skeyseed);
rekey->prf->set_key(rekey->prf, skeyseed);
prf_plus = prf_plus_create(rekey->prf, prf_plus_seed);
}
DBG4(DBG_IKE, "SKEYSEED %B", &skeyseed);
chunk_clear(&skeyseed);
chunk_clear(&secret);
chunk_free(&full_nonce);
chunk_free(&fixed_nonce);
chunk_clear(&prf_plus_seed);
/* KEYMAT = SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr */
/* SK_d is used for generating CHILD_SA key mat => store for later use */
key_size = this->prf->get_key_size(this->prf);
prf_plus->allocate_bytes(prf_plus, key_size, &this->skd);
DBG4(DBG_IKE, "Sk_d secret %B", &this->skd);
/* SK_ai/SK_ar used for integrity protection => signer_in/signer_out */
if (!proposal->get_algorithm(proposal, INTEGRITY_ALGORITHM, &alg, NULL))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, INTEGRITY_ALGORITHM);
return FALSE;
}
signer_i = lib->crypto->create_signer(lib->crypto, alg);
signer_r = lib->crypto->create_signer(lib->crypto, alg);
if (signer_i == NULL || signer_r == NULL)
{
DBG1(DBG_IKE, "%N %N not supported!",
transform_type_names, INTEGRITY_ALGORITHM,
integrity_algorithm_names ,alg);
prf_plus->destroy(prf_plus);
return FALSE;
}
key_size = signer_i->get_key_size(signer_i);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ai secret %B", &key);
signer_i->set_key(signer_i, key);
chunk_clear(&key);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ar secret %B", &key);
signer_r->set_key(signer_r, key);
chunk_clear(&key);
if (this->initiator)
{
this->signer_in = signer_r;
this->signer_out = signer_i;
}
else
{
this->signer_in = signer_i;
this->signer_out = signer_r;
}
/* SK_ei/SK_er used for encryption => crypter_in/crypter_out */
if (!proposal->get_algorithm(proposal, ENCRYPTION_ALGORITHM, &alg, &key_size))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, ENCRYPTION_ALGORITHM);
prf_plus->destroy(prf_plus);
return FALSE;
}
crypter_i = lib->crypto->create_crypter(lib->crypto, alg, key_size / 8);
crypter_r = lib->crypto->create_crypter(lib->crypto, alg, key_size / 8);
if (crypter_i == NULL || crypter_r == NULL)
{
DBG1(DBG_IKE, "%N %N (key size %d) not supported!",
transform_type_names, ENCRYPTION_ALGORITHM,
encryption_algorithm_names, alg, key_size);
prf_plus->destroy(prf_plus);
return FALSE;
}
key_size = crypter_i->get_key_size(crypter_i);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ei secret %B", &key);
crypter_i->set_key(crypter_i, key);
chunk_clear(&key);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_er secret %B", &key);
crypter_r->set_key(crypter_r, key);
chunk_clear(&key);
if (this->initiator)
{
this->crypter_in = crypter_r;
this->crypter_out = crypter_i;
}
else
{
this->crypter_in = crypter_i;
this->crypter_out = crypter_r;
}
/* SK_pi/SK_pr used for authentication => stored for later */
key_size = this->prf->get_key_size(this->prf);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_pi secret %B", &key);
if (this->initiator)
{
this->skp_build = key;
}
else
{
this->skp_verify = key;
}
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_pr secret %B", &key);
if (this->initiator)
{
this->skp_verify = key;
}
else
{
this->skp_build = key;
}
/* all done, prf_plus not needed anymore */
prf_plus->destroy(prf_plus);
return TRUE;
}
/**
* Implementation of keymat_t.derive_child_keys
*/
static bool derive_child_keys(private_keymat_t *this,
proposal_t *proposal, diffie_hellman_t *dh,
chunk_t nonce_i, chunk_t nonce_r,
chunk_t *encr_i, chunk_t *integ_i,
chunk_t *encr_r, chunk_t *integ_r)
{
u_int16_t enc_alg, int_alg, enc_size = 0, int_size = 0;
chunk_t seed, secret = chunk_empty;
prf_plus_t *prf_plus;
if (dh)
{
if (dh->get_shared_secret(dh, &secret) != SUCCESS)
{
return FALSE;
}
DBG4(DBG_CHD, "DH secret %B", &secret);
}
seed = chunk_cata("mcc", secret, nonce_i, nonce_r);
DBG4(DBG_CHD, "seed %B", &seed);
if (proposal->get_algorithm(proposal, ENCRYPTION_ALGORITHM,
&enc_alg, &enc_size))
{
DBG2(DBG_CHD, " using %N for encryption",
encryption_algorithm_names, enc_alg);
if (!enc_size)
{
enc_size = lookup_keylen(keylen_enc, enc_alg);
}
if (!enc_size)
{
DBG1(DBG_CHD, "no keylenth defined for %N",
encryption_algorithm_names, enc_alg);
return FALSE;
}
/* to bytes */
enc_size /= 8;
/* CCM/GCM needs additional bytes */
switch (enc_alg)
{
case ENCR_AES_CCM_ICV8:
case ENCR_AES_CCM_ICV12:
case ENCR_AES_CCM_ICV16:
enc_size += 3;
break;
case ENCR_AES_GCM_ICV8:
case ENCR_AES_GCM_ICV12:
case ENCR_AES_GCM_ICV16:
enc_size += 4;
break;
default:
break;
}
}
if (proposal->get_algorithm(proposal, INTEGRITY_ALGORITHM,
&int_alg, &int_size))
{
DBG2(DBG_CHD, " using %N for integrity",
integrity_algorithm_names, int_alg);
if (!int_size)
{
int_size = lookup_keylen(keylen_int, int_alg);
}
if (!int_size)
{
DBG1(DBG_CHD, "no keylenth defined for %N",
integrity_algorithm_names, int_alg);
return FALSE;
}
/* to bytes */
int_size /= 8;
}
this->prf->set_key(this->prf, this->skd);
prf_plus = prf_plus_create(this->prf, seed);
prf_plus->allocate_bytes(prf_plus, enc_size, encr_i);
prf_plus->allocate_bytes(prf_plus, int_size, integ_i);
prf_plus->allocate_bytes(prf_plus, enc_size, encr_r);
prf_plus->allocate_bytes(prf_plus, int_size, integ_r);
prf_plus->destroy(prf_plus);
return TRUE;
}
/**
* Implementation of keymat_t.get_signer
*/
static signer_t* get_signer(private_keymat_t *this, bool in)
{
return in ? this->signer_in : this->signer_out;
}
/**
* Implementation of keymat_t.get_crypter
*/
static crypter_t* get_crypter(private_keymat_t *this, bool in)
{
return in ? this->crypter_in : this->crypter_out;
}
/**
* Implementation of keymat_t.get_auth_octets
*/
static chunk_t get_auth_octets(private_keymat_t *this, bool verify,
chunk_t ike_sa_init, chunk_t nonce,
identification_t *id)
{
chunk_t chunk, idx, octets;
chunk_t skp;
skp = verify ? this->skp_verify : this->skp_build;
chunk = chunk_alloca(4);
memset(chunk.ptr, 0, chunk.len);
chunk.ptr[0] = id->get_type(id);
idx = chunk_cata("cc", chunk, id->get_encoding(id));
DBG3(DBG_IKE, "IDx' %B", &idx);
DBG3(DBG_IKE, "SK_p %B", &skp);
this->prf->set_key(this->prf, skp);
this->prf->allocate_bytes(this->prf, idx, &chunk);
octets = chunk_cat("ccm", ike_sa_init, nonce, chunk);
DBG3(DBG_IKE, "octets = message + nonce + prf(Sk_px, IDx') %B", &octets);
return octets;
}
/**
* Key pad for the AUTH method SHARED_KEY_MESSAGE_INTEGRITY_CODE.
*/
#define IKEV2_KEY_PAD "Key Pad for IKEv2"
#define IKEV2_KEY_PAD_LENGTH 17
/**
* Implementation of keymat_t.get_psk_sig
*/
static chunk_t get_psk_sig(private_keymat_t *this, bool verify,
chunk_t ike_sa_init, chunk_t nonce, chunk_t secret,
identification_t *id)
{
chunk_t key_pad, key, sig, octets;
if (!secret.len)
{ /* EAP uses SK_p if no MSK has been established */
secret = verify ? this->skp_verify : this->skp_build;
}
octets = get_auth_octets(this, verify, ike_sa_init, nonce, id);
/* AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>) */
key_pad = chunk_create(IKEV2_KEY_PAD, IKEV2_KEY_PAD_LENGTH);
this->prf->set_key(this->prf, secret);
this->prf->allocate_bytes(this->prf, key_pad, &key);
this->prf->set_key(this->prf, key);
this->prf->allocate_bytes(this->prf, octets, &sig);
DBG4(DBG_IKE, "secret %B", &secret);
DBG4(DBG_IKE, "prf(secret, keypad) %B", &key);
DBG3(DBG_IKE, "AUTH = prf(prf(secret, keypad), octets) %B", &sig);
chunk_free(&octets);
chunk_free(&key);
return sig;
}
/**
* Implementation of keymat_t.destroy.
*/
static void destroy(private_keymat_t *this)
{
DESTROY_IF(this->signer_in);
DESTROY_IF(this->signer_out);
DESTROY_IF(this->crypter_in);
DESTROY_IF(this->crypter_out);
DESTROY_IF(this->prf);
chunk_clear(&this->skd);
chunk_clear(&this->skp_verify);
chunk_clear(&this->skp_build);
free(this);
}
/**
* See header
*/
keymat_t *keymat_create(bool initiator)
{
private_keymat_t *this = malloc_thing(private_keymat_t);
this->public.create_dh = (diffie_hellman_t*(*)(keymat_t*, diffie_hellman_group_t group))create_dh;
this->public.derive_ike_keys = (bool(*)(keymat_t*, proposal_t *proposal, diffie_hellman_t *dh, chunk_t nonce_i, chunk_t nonce_r, ike_sa_id_t *id, keymat_t *rekey))derive_ike_keys;
this->public.derive_child_keys = (bool(*)(keymat_t*, proposal_t *proposal, diffie_hellman_t *dh, chunk_t nonce_i, chunk_t nonce_r, chunk_t *encr_i, chunk_t *integ_i, chunk_t *encr_r, chunk_t *integ_r))derive_child_keys;
this->public.get_signer = (signer_t*(*)(keymat_t*, bool in))get_signer;
this->public.get_crypter = (crypter_t*(*)(keymat_t*, bool in))get_crypter;
this->public.get_auth_octets = (chunk_t(*)(keymat_t *, bool verify, chunk_t ike_sa_init, chunk_t nonce, identification_t *id))get_auth_octets;
this->public.get_psk_sig = (chunk_t(*)(keymat_t*, bool verify, chunk_t ike_sa_init, chunk_t nonce, chunk_t secret, identification_t *id))get_psk_sig;
this->public.destroy = (void(*)(keymat_t*))destroy;
this->initiator = initiator;
this->signer_in = NULL;
this->signer_out = NULL;
this->crypter_in = NULL;
this->crypter_out = NULL;
this->prf = NULL;
this->skd = chunk_empty;
this->skp_verify = chunk_empty;
this->skp_build = chunk_empty;
return &this->public;
}
|