1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* Copyright (C) 2013 Tobias Brunner
* HSR Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "pkcs12.h"
#include <library.h>
#include <utils/debug.h>
/**
* v * ceiling(len/v)
*/
#define PKCS12_LEN(len, v) (((len) + v-1) & ~(v-1))
/**
* Copy src to dst as many times as possible
*/
static inline void copy_chunk(chunk_t dst, chunk_t src)
{
size_t i;
for (i = 0; i < dst.len; i++)
{
dst.ptr[i] = src.ptr[i % src.len];
}
}
/**
* Treat two chunks as integers in network order and add them together.
* The result is stored in the first chunk, if the second chunk is longer or the
* result overflows this is ignored.
*/
static void add_chunks(chunk_t a, chunk_t b)
{
uint16_t sum;
uint8_t rem = 0;
ssize_t i, j;
for (i = a.len - 1, j = b.len -1; i >= 0 && j >= 0; i--, j--)
{
sum = a.ptr[i] + b.ptr[j] + rem;
a.ptr[i] = (u_char)sum;
rem = sum >> 8;
}
for (; i >= 0 && rem; i--)
{
sum = a.ptr[i] + rem;
a.ptr[i] = (u_char)sum;
rem = sum >> 8;
}
}
/**
* Do the actual key derivation with the given hasher, password and id.
*/
static bool derive_key(hash_algorithm_t hash, chunk_t unicode, chunk_t salt,
uint64_t iterations, char id, chunk_t result)
{
chunk_t out = result, D, S, P = chunk_empty, I, Ai, B, Ij;
hasher_t *hasher;
size_t Slen, v, u;
uint64_t i;
bool success = FALSE;
hasher = lib->crypto->create_hasher(lib->crypto, hash);
if (!hasher)
{
DBG1(DBG_ASN, " %N hash algorithm not available",
hash_algorithm_names, hash);
return FALSE;
}
switch (hash)
{
case HASH_MD2:
case HASH_MD5:
case HASH_SHA1:
case HASH_SHA224:
case HASH_SHA256:
v = 64;
break;
case HASH_SHA384:
case HASH_SHA512:
v = 128;
break;
default:
goto end;
}
u = hasher->get_hash_size(hasher);
D = chunk_alloca(v);
memset(D.ptr, id, D.len);
Slen = PKCS12_LEN(salt.len, v);
I = chunk_alloca(Slen + PKCS12_LEN(unicode.len, v));
S = chunk_create(I.ptr, Slen);
P = chunk_create(I.ptr + Slen, I.len - Slen);
copy_chunk(S, salt);
copy_chunk(P, unicode);
Ai = chunk_alloca(u);
B = chunk_alloca(v);
while (TRUE)
{
if (!hasher->get_hash(hasher, D, NULL) ||
!hasher->get_hash(hasher, I, Ai.ptr))
{
goto end;
}
for (i = 1; i < iterations; i++)
{
if (!hasher->get_hash(hasher, Ai, Ai.ptr))
{
goto end;
}
}
memcpy(out.ptr, Ai.ptr, min(out.len, Ai.len));
out = chunk_skip(out, Ai.len);
if (!out.len)
{
break;
}
copy_chunk(B, Ai);
/* B = B+1 */
add_chunks(B, chunk_from_chars(0x01));
Ij = chunk_create(I.ptr, v);
for (i = 0; i < I.len; i += v, Ij.ptr += v)
{ /* Ij = Ij + B + 1 */
add_chunks(Ij, B);
}
}
success = TRUE;
end:
hasher->destroy(hasher);
return success;
}
/*
* Described in header
*/
bool pkcs12_derive_key(hash_algorithm_t hash, chunk_t password, chunk_t salt,
uint64_t iterations, pkcs12_key_type_t type, chunk_t key)
{
chunk_t unicode = chunk_empty;
bool success;
int i;
if (password.len)
{ /* convert the password to UTF-16BE (without BOM) with 0 terminator */
unicode = chunk_alloca(password.len * 2 + 2);
for (i = 0; i < password.len; i++)
{
unicode.ptr[i * 2] = 0;
unicode.ptr[i * 2 + 1] = password.ptr[i];
}
unicode.ptr[i * 2] = 0;
unicode.ptr[i * 2 + 1] = 0;
}
success = derive_key(hash, unicode, salt, iterations, type, key);
memwipe(unicode.ptr, unicode.len);
return success;
}
|