summaryrefslogtreecommitdiff
path: root/src/libstrongswan/plugins/aes/aes_crypter.c
blob: ce4c6da99146df9059b21ea05edadb069417579b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
/*
 * Copyright (C) 2001 Dr B. R. Gladman <brg@gladman.uk.net>
 * Copyright (C) 2005-2006 Martin Willi
 * Copyright (C) 2005 Jan Hutter
 * Hochschule fuer Technik Rapperswil
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <http://www.fsf.org/copyleft/gpl.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * $Id: aes_crypter.c 3900 2008-04-30 14:02:25Z martin $
 */
 
#include "aes_crypter.h"

/*
 * The number of key schedule words for different block and key lengths
 * allowing for method of computation which requires the length to be a
 * multiple of the key length. This version of AES implementation supports
 * all three keylengths 16, 24 and 32 bytes!
 *
 * Nk =       4   6   8
 *        -------------
 * Nb = 4 |  60  60  64
 *      6 |  96  90  96
 *      8 | 120 120 120
 */
#define AES_KS_LENGTH   120
#define AES_RC_LENGTH    29

#define AES_BLOCK_SIZE 16

typedef struct private_aes_crypter_t private_aes_crypter_t;

/**
 * Class implementing the AES symmetric encryption algorithm.
 * 
 * @ingroup crypters
 */
struct private_aes_crypter_t {
	
	/**
	 * Public part of this class.
	 */
	aes_crypter_t public;
	
	/**
	 * Number of words in the key input block.
	 */
	u_int32_t    aes_Nkey;
	
	/**
	 * The number of cipher rounds.
	 */
	u_int32_t    aes_Nrnd;
	
	/**
	* The encryption key schedule.
	*/
	u_int32_t    aes_e_key[AES_KS_LENGTH];

	/**
	* The decryption key schedule.
	*/
	u_int32_t    aes_d_key[AES_KS_LENGTH];
	
	/**
	* Key size of this AES cypher object.
	*/
	u_int32_t    key_size;
};


/* ugly macro stuff */

/* 1.  Define UNROLL for full loop unrolling in encryption and decryption.
 * 2.  Define PARTIAL_UNROLL to unroll two loops in encryption and decryption.
 * 3.  Define FIXED_TABLES for compiled rather than dynamic tables.
 * 4.  Define FF_TABLES to use tables for field multiplies and inverses.
 *     Do not enable this without understanding stack space requirements.
 * 5.  Define ARRAYS to use arrays to hold the local state block. If this
 *     is not defined, individually declared 32-bit words are used.
 * 6.  Define FAST_VARIABLE if a high speed variable block implementation
 *     is needed (essentially three separate fixed block size code sequences)
 * 7.  Define either ONE_TABLE or FOUR_TABLES for a fast table driven 
 *     version using 1 table (2 kbytes of table space) or 4 tables (8
 *     kbytes of table space) for higher speed.
 * 8.  Define either ONE_LR_TABLE or FOUR_LR_TABLES for a further speed 
 *     increase by using tables for the last rounds but with more table
 *     space (2 or 8 kbytes extra).
 * 9.  If neither ONE_TABLE nor FOUR_TABLES is defined, a compact but 
 *     slower version is provided.
 * 10. If fast decryption key scheduling is needed define ONE_IM_TABLE
 *     or FOUR_IM_TABLES for higher speed (2 or 8 kbytes extra).
 */

#define UNROLL
//#define PARTIAL_UNROLL

#define FIXED_TABLES
//#define FF_TABLES
//#define ARRAYS
#define FAST_VARIABLE

//#define ONE_TABLE
#define FOUR_TABLES

//#define ONE_LR_TABLE
#define FOUR_LR_TABLES

//#define ONE_IM_TABLE
#define FOUR_IM_TABLES

#if defined(UNROLL) && defined (PARTIAL_UNROLL)
#error both UNROLL and PARTIAL_UNROLL are defined
#endif

#if defined(ONE_TABLE) && defined (FOUR_TABLES)
#error both ONE_TABLE and FOUR_TABLES are defined
#endif

#if defined(ONE_LR_TABLE) && defined (FOUR_LR_TABLES)
#error both ONE_LR_TABLE and FOUR_LR_TABLES are defined
#endif

#if defined(ONE_IM_TABLE) && defined (FOUR_IM_TABLES)
#error both ONE_IM_TABLE and FOUR_IM_TABLES are defined
#endif

#if defined(AES_BLOCK_SIZE) && AES_BLOCK_SIZE != 16 && AES_BLOCK_SIZE != 24 && AES_BLOCK_SIZE != 32
#error an illegal block size has been specified
#endif  

/**
 * Rotates bytes within words by n positions, moving bytes 
 * to higher index positions with wrap around into low positions.
 */ 
#define upr(x,n)        (((x) << 8 * (n)) | ((x) >> (32 - 8 * (n))))
/**
 * Moves bytes by n positions to higher index positions in 
 * words but without wrap around.
 */ 
#define ups(x,n)        ((x) << 8 * (n))

/**
 * Extracts a byte from a word.
 */
#define bval(x,n)       ((unsigned char)((x) >> 8 * (n)))
#define bytes2word(b0, b1, b2, b3)  \
        ((u_int32_t)(b3) << 24 | (u_int32_t)(b2) << 16 | (u_int32_t)(b1) << 8 | (b0))


/* little endian processor without data alignment restrictions: AES_LE_OK */
/* original code: i386 */
#if defined(i386) || defined(_I386) || defined(__i386__) || defined(__i386) 
#define	AES_LE_OK 1
/* added (tested): alpha  --jjo */
#elif defined(__alpha__)|| defined (__alpha)
#define AES_LE_OK 1
/* added (tested): ia64  --jjo */
#elif defined(__ia64__)|| defined (__ia64)
#define AES_LE_OK 1
#endif

#ifdef AES_LE_OK
/* little endian processor without data alignment restrictions */
#define word_in(x)      *(u_int32_t*)(x)
#define const_word_in(x)      *(const u_int32_t*)(x)
#define word_out(x,v)   *(u_int32_t*)(x) = (v)
#define const_word_out(x,v)   *(const u_int32_t*)(x) = (v)
#else
/* slower but generic big endian or with data alignment restrictions */
/* some additional "const" touches to stop "gcc -Wcast-qual" complains --jjo */
#define word_in(x)      ((u_int32_t)(((unsigned char *)(x))[0])|((u_int32_t)(((unsigned char *)(x))[1])<<8)|((u_int32_t)(((unsigned char *)(x))[2])<<16)|((u_int32_t)(((unsigned char *)(x))[3])<<24))
#define const_word_in(x)      ((const u_int32_t)(((const unsigned char *)(x))[0])|((const u_int32_t)(((const unsigned char *)(x))[1])<<8)|((const u_int32_t)(((const unsigned char *)(x))[2])<<16)|((const u_int32_t)(((const unsigned char *)(x))[3])<<24))
#define word_out(x,v)   ((unsigned char *)(x))[0]=(v),((unsigned char *)(x))[1]=((v)>>8),((unsigned char *)(x))[2]=((v)>>16),((unsigned char *)(x))[3]=((v)>>24)
#define const_word_out(x,v)   ((const unsigned char *)(x))[0]=(v),((const unsigned char *)(x))[1]=((v)>>8),((const unsigned char *)(x))[2]=((v)>>16),((const unsigned char *)(x))[3]=((v)>>24)
#endif

// Disable at least some poor combinations of options

#if !defined(ONE_TABLE) && !defined(FOUR_TABLES)
#define FIXED_TABLES
#undef  UNROLL
#undef  ONE_LR_TABLE
#undef  FOUR_LR_TABLES
#undef  ONE_IM_TABLE
#undef  FOUR_IM_TABLES
#elif !defined(FOUR_TABLES)
#ifdef  FOUR_LR_TABLES
#undef  FOUR_LR_TABLES
#define ONE_LR_TABLE
#endif
#ifdef  FOUR_IM_TABLES
#undef  FOUR_IM_TABLES
#define ONE_IM_TABLE
#endif
#elif !defined(AES_BLOCK_SIZE)
#if defined(UNROLL)
#define PARTIAL_UNROLL
#undef UNROLL
#endif
#endif

// the finite field modular polynomial and elements

#define ff_poly 0x011b
#define ff_hi   0x80

// multiply four bytes in GF(2^8) by 'x' {02} in parallel

#define m1  0x80808080
#define m2  0x7f7f7f7f
#define m3  0x0000001b
#define FFmulX(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * m3))

// The following defines provide alternative definitions of FFmulX that might
// give improved performance if a fast 32-bit multiply is not available. Note
// that a temporary variable u needs to be defined where FFmulX is used.

// #define FFmulX(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) 
// #define m4  0x1b1b1b1b
// #define FFmulX(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) 

// perform column mix operation on four bytes in parallel

#define fwd_mcol(x) (f2 = FFmulX(x), f2 ^ upr(x ^ f2,3) ^ upr(x,2) ^ upr(x,1))

#if defined(FIXED_TABLES)

// the S-Box table

static const unsigned char s_box[256] =
{
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
    0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
    0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
    0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
    0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
    0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
    0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
    0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
    0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
    0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
    0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
    0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
    0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
    0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
    0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
    0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
    0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};

// the inverse S-Box table

static const unsigned char inv_s_box[256] =
{
    0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
    0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
    0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
    0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
    0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
    0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
    0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
    0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
    0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
    0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
    0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
    0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
    0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
    0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
    0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
    0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
    0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
    0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
    0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
    0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
    0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
    0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
    0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
    0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
    0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
    0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
    0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
    0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
    0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
    0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
    0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};

#define w0(p)          0x000000##p

// Number of elements required in this table for different
// block and key lengths is:
//
// Nk =      4  6  8
//        ----------
// Nb = 4 | 10  8  7
//      6 | 19 12 11
//      8 | 29 19 14
//
// this table can be a table of bytes if the key schedule
// code is adjusted accordingly

static const u_int32_t rcon_tab[29] =
{
    w0(01), w0(02), w0(04), w0(08),
    w0(10), w0(20), w0(40), w0(80),
    w0(1b), w0(36), w0(6c), w0(d8),
    w0(ab), w0(4d), w0(9a), w0(2f),
    w0(5e), w0(bc), w0(63), w0(c6),
    w0(97), w0(35), w0(6a), w0(d4),
    w0(b3), w0(7d), w0(fa), w0(ef),
    w0(c5)
};

#undef  w0

#define r0(p,q,r,s) 0x##p##q##r##s
#define r1(p,q,r,s) 0x##q##r##s##p
#define r2(p,q,r,s) 0x##r##s##p##q
#define r3(p,q,r,s) 0x##s##p##q##r
#define w0(p)          0x000000##p
#define w1(p)        0x0000##p##00
#define w2(p)        0x00##p##0000
#define w3(p)        0x##p##000000

#if defined(FIXED_TABLES) && (defined(ONE_TABLE) || defined(FOUR_TABLES)) 

//  data for forward tables (other than last round)

#define f_table \
    r(a5,63,63,c6), r(84,7c,7c,f8), r(99,77,77,ee), r(8d,7b,7b,f6),\
    r(0d,f2,f2,ff), r(bd,6b,6b,d6), r(b1,6f,6f,de), r(54,c5,c5,91),\
    r(50,30,30,60), r(03,01,01,02), r(a9,67,67,ce), r(7d,2b,2b,56),\
    r(19,fe,fe,e7), r(62,d7,d7,b5), r(e6,ab,ab,4d), r(9a,76,76,ec),\
    r(45,ca,ca,8f), r(9d,82,82,1f), r(40,c9,c9,89), r(87,7d,7d,fa),\
    r(15,fa,fa,ef), r(eb,59,59,b2), r(c9,47,47,8e), r(0b,f0,f0,fb),\
    r(ec,ad,ad,41), r(67,d4,d4,b3), r(fd,a2,a2,5f), r(ea,af,af,45),\
    r(bf,9c,9c,23), r(f7,a4,a4,53), r(96,72,72,e4), r(5b,c0,c0,9b),\
    r(c2,b7,b7,75), r(1c,fd,fd,e1), r(ae,93,93,3d), r(6a,26,26,4c),\
    r(5a,36,36,6c), r(41,3f,3f,7e), r(02,f7,f7,f5), r(4f,cc,cc,83),\
    r(5c,34,34,68), r(f4,a5,a5,51), r(34,e5,e5,d1), r(08,f1,f1,f9),\
    r(93,71,71,e2), r(73,d8,d8,ab), r(53,31,31,62), r(3f,15,15,2a),\
    r(0c,04,04,08), r(52,c7,c7,95), r(65,23,23,46), r(5e,c3,c3,9d),\
    r(28,18,18,30), r(a1,96,96,37), r(0f,05,05,0a), r(b5,9a,9a,2f),\
    r(09,07,07,0e), r(36,12,12,24), r(9b,80,80,1b), r(3d,e2,e2,df),\
    r(26,eb,eb,cd), r(69,27,27,4e), r(cd,b2,b2,7f), r(9f,75,75,ea),\
    r(1b,09,09,12), r(9e,83,83,1d), r(74,2c,2c,58), r(2e,1a,1a,34),\
    r(2d,1b,1b,36), r(b2,6e,6e,dc), r(ee,5a,5a,b4), r(fb,a0,a0,5b),\
    r(f6,52,52,a4), r(4d,3b,3b,76), r(61,d6,d6,b7), r(ce,b3,b3,7d),\
    r(7b,29,29,52), r(3e,e3,e3,dd), r(71,2f,2f,5e), r(97,84,84,13),\
    r(f5,53,53,a6), r(68,d1,d1,b9), r(00,00,00,00), r(2c,ed,ed,c1),\
    r(60,20,20,40), r(1f,fc,fc,e3), r(c8,b1,b1,79), r(ed,5b,5b,b6),\
    r(be,6a,6a,d4), r(46,cb,cb,8d), r(d9,be,be,67), r(4b,39,39,72),\
    r(de,4a,4a,94), r(d4,4c,4c,98), r(e8,58,58,b0), r(4a,cf,cf,85),\
    r(6b,d0,d0,bb), r(2a,ef,ef,c5), r(e5,aa,aa,4f), r(16,fb,fb,ed),\
    r(c5,43,43,86), r(d7,4d,4d,9a), r(55,33,33,66), r(94,85,85,11),\
    r(cf,45,45,8a), r(10,f9,f9,e9), r(06,02,02,04), r(81,7f,7f,fe),\
    r(f0,50,50,a0), r(44,3c,3c,78), r(ba,9f,9f,25), r(e3,a8,a8,4b),\
    r(f3,51,51,a2), r(fe,a3,a3,5d), r(c0,40,40,80), r(8a,8f,8f,05),\
    r(ad,92,92,3f), r(bc,9d,9d,21), r(48,38,38,70), r(04,f5,f5,f1),\
    r(df,bc,bc,63), r(c1,b6,b6,77), r(75,da,da,af), r(63,21,21,42),\
    r(30,10,10,20), r(1a,ff,ff,e5), r(0e,f3,f3,fd), r(6d,d2,d2,bf),\
    r(4c,cd,cd,81), r(14,0c,0c,18), r(35,13,13,26), r(2f,ec,ec,c3),\
    r(e1,5f,5f,be), r(a2,97,97,35), r(cc,44,44,88), r(39,17,17,2e),\
    r(57,c4,c4,93), r(f2,a7,a7,55), r(82,7e,7e,fc), r(47,3d,3d,7a),\
    r(ac,64,64,c8), r(e7,5d,5d,ba), r(2b,19,19,32), r(95,73,73,e6),\
    r(a0,60,60,c0), r(98,81,81,19), r(d1,4f,4f,9e), r(7f,dc,dc,a3),\
    r(66,22,22,44), r(7e,2a,2a,54), r(ab,90,90,3b), r(83,88,88,0b),\
    r(ca,46,46,8c), r(29,ee,ee,c7), r(d3,b8,b8,6b), r(3c,14,14,28),\
    r(79,de,de,a7), r(e2,5e,5e,bc), r(1d,0b,0b,16), r(76,db,db,ad),\
    r(3b,e0,e0,db), r(56,32,32,64), r(4e,3a,3a,74), r(1e,0a,0a,14),\
    r(db,49,49,92), r(0a,06,06,0c), r(6c,24,24,48), r(e4,5c,5c,b8),\
    r(5d,c2,c2,9f), r(6e,d3,d3,bd), r(ef,ac,ac,43), r(a6,62,62,c4),\
    r(a8,91,91,39), r(a4,95,95,31), r(37,e4,e4,d3), r(8b,79,79,f2),\
    r(32,e7,e7,d5), r(43,c8,c8,8b), r(59,37,37,6e), r(b7,6d,6d,da),\
    r(8c,8d,8d,01), r(64,d5,d5,b1), r(d2,4e,4e,9c), r(e0,a9,a9,49),\
    r(b4,6c,6c,d8), r(fa,56,56,ac), r(07,f4,f4,f3), r(25,ea,ea,cf),\
    r(af,65,65,ca), r(8e,7a,7a,f4), r(e9,ae,ae,47), r(18,08,08,10),\
    r(d5,ba,ba,6f), r(88,78,78,f0), r(6f,25,25,4a), r(72,2e,2e,5c),\
    r(24,1c,1c,38), r(f1,a6,a6,57), r(c7,b4,b4,73), r(51,c6,c6,97),\
    r(23,e8,e8,cb), r(7c,dd,dd,a1), r(9c,74,74,e8), r(21,1f,1f,3e),\
    r(dd,4b,4b,96), r(dc,bd,bd,61), r(86,8b,8b,0d), r(85,8a,8a,0f),\
    r(90,70,70,e0), r(42,3e,3e,7c), r(c4,b5,b5,71), r(aa,66,66,cc),\
    r(d8,48,48,90), r(05,03,03,06), r(01,f6,f6,f7), r(12,0e,0e,1c),\
    r(a3,61,61,c2), r(5f,35,35,6a), r(f9,57,57,ae), r(d0,b9,b9,69),\
    r(91,86,86,17), r(58,c1,c1,99), r(27,1d,1d,3a), r(b9,9e,9e,27),\
    r(38,e1,e1,d9), r(13,f8,f8,eb), r(b3,98,98,2b), r(33,11,11,22),\
    r(bb,69,69,d2), r(70,d9,d9,a9), r(89,8e,8e,07), r(a7,94,94,33),\
    r(b6,9b,9b,2d), r(22,1e,1e,3c), r(92,87,87,15), r(20,e9,e9,c9),\
    r(49,ce,ce,87), r(ff,55,55,aa), r(78,28,28,50), r(7a,df,df,a5),\
    r(8f,8c,8c,03), r(f8,a1,a1,59), r(80,89,89,09), r(17,0d,0d,1a),\
    r(da,bf,bf,65), r(31,e6,e6,d7), r(c6,42,42,84), r(b8,68,68,d0),\
    r(c3,41,41,82), r(b0,99,99,29), r(77,2d,2d,5a), r(11,0f,0f,1e),\
    r(cb,b0,b0,7b), r(fc,54,54,a8), r(d6,bb,bb,6d), r(3a,16,16,2c)

//  data for inverse tables (other than last round)

#define i_table \
    r(50,a7,f4,51), r(53,65,41,7e), r(c3,a4,17,1a), r(96,5e,27,3a),\
    r(cb,6b,ab,3b), r(f1,45,9d,1f), r(ab,58,fa,ac), r(93,03,e3,4b),\
    r(55,fa,30,20), r(f6,6d,76,ad), r(91,76,cc,88), r(25,4c,02,f5),\
    r(fc,d7,e5,4f), r(d7,cb,2a,c5), r(80,44,35,26), r(8f,a3,62,b5),\
    r(49,5a,b1,de), r(67,1b,ba,25), r(98,0e,ea,45), r(e1,c0,fe,5d),\
    r(02,75,2f,c3), r(12,f0,4c,81), r(a3,97,46,8d), r(c6,f9,d3,6b),\
    r(e7,5f,8f,03), r(95,9c,92,15), r(eb,7a,6d,bf), r(da,59,52,95),\
    r(2d,83,be,d4), r(d3,21,74,58), r(29,69,e0,49), r(44,c8,c9,8e),\
    r(6a,89,c2,75), r(78,79,8e,f4), r(6b,3e,58,99), r(dd,71,b9,27),\
    r(b6,4f,e1,be), r(17,ad,88,f0), r(66,ac,20,c9), r(b4,3a,ce,7d),\
    r(18,4a,df,63), r(82,31,1a,e5), r(60,33,51,97), r(45,7f,53,62),\
    r(e0,77,64,b1), r(84,ae,6b,bb), r(1c,a0,81,fe), r(94,2b,08,f9),\
    r(58,68,48,70), r(19,fd,45,8f), r(87,6c,de,94), r(b7,f8,7b,52),\
    r(23,d3,73,ab), r(e2,02,4b,72), r(57,8f,1f,e3), r(2a,ab,55,66),\
    r(07,28,eb,b2), r(03,c2,b5,2f), r(9a,7b,c5,86), r(a5,08,37,d3),\
    r(f2,87,28,30), r(b2,a5,bf,23), r(ba,6a,03,02), r(5c,82,16,ed),\
    r(2b,1c,cf,8a), r(92,b4,79,a7), r(f0,f2,07,f3), r(a1,e2,69,4e),\
    r(cd,f4,da,65), r(d5,be,05,06), r(1f,62,34,d1), r(8a,fe,a6,c4),\
    r(9d,53,2e,34), r(a0,55,f3,a2), r(32,e1,8a,05), r(75,eb,f6,a4),\
    r(39,ec,83,0b), r(aa,ef,60,40), r(06,9f,71,5e), r(51,10,6e,bd),\
    r(f9,8a,21,3e), r(3d,06,dd,96), r(ae,05,3e,dd), r(46,bd,e6,4d),\
    r(b5,8d,54,91), r(05,5d,c4,71), r(6f,d4,06,04), r(ff,15,50,60),\
    r(24,fb,98,19), r(97,e9,bd,d6), r(cc,43,40,89), r(77,9e,d9,67),\
    r(bd,42,e8,b0), r(88,8b,89,07), r(38,5b,19,e7), r(db,ee,c8,79),\
    r(47,0a,7c,a1), r(e9,0f,42,7c), r(c9,1e,84,f8), r(00,00,00,00),\
    r(83,86,80,09), r(48,ed,2b,32), r(ac,70,11,1e), r(4e,72,5a,6c),\
    r(fb,ff,0e,fd), r(56,38,85,0f), r(1e,d5,ae,3d), r(27,39,2d,36),\
    r(64,d9,0f,0a), r(21,a6,5c,68), r(d1,54,5b,9b), r(3a,2e,36,24),\
    r(b1,67,0a,0c), r(0f,e7,57,93), r(d2,96,ee,b4), r(9e,91,9b,1b),\
    r(4f,c5,c0,80), r(a2,20,dc,61), r(69,4b,77,5a), r(16,1a,12,1c),\
    r(0a,ba,93,e2), r(e5,2a,a0,c0), r(43,e0,22,3c), r(1d,17,1b,12),\
    r(0b,0d,09,0e), r(ad,c7,8b,f2), r(b9,a8,b6,2d), r(c8,a9,1e,14),\
    r(85,19,f1,57), r(4c,07,75,af), r(bb,dd,99,ee), r(fd,60,7f,a3),\
    r(9f,26,01,f7), r(bc,f5,72,5c), r(c5,3b,66,44), r(34,7e,fb,5b),\
    r(76,29,43,8b), r(dc,c6,23,cb), r(68,fc,ed,b6), r(63,f1,e4,b8),\
    r(ca,dc,31,d7), r(10,85,63,42), r(40,22,97,13), r(20,11,c6,84),\
    r(7d,24,4a,85), r(f8,3d,bb,d2), r(11,32,f9,ae), r(6d,a1,29,c7),\
    r(4b,2f,9e,1d), r(f3,30,b2,dc), r(ec,52,86,0d), r(d0,e3,c1,77),\
    r(6c,16,b3,2b), r(99,b9,70,a9), r(fa,48,94,11), r(22,64,e9,47),\
    r(c4,8c,fc,a8), r(1a,3f,f0,a0), r(d8,2c,7d,56), r(ef,90,33,22),\
    r(c7,4e,49,87), r(c1,d1,38,d9), r(fe,a2,ca,8c), r(36,0b,d4,98),\
    r(cf,81,f5,a6), r(28,de,7a,a5), r(26,8e,b7,da), r(a4,bf,ad,3f),\
    r(e4,9d,3a,2c), r(0d,92,78,50), r(9b,cc,5f,6a), r(62,46,7e,54),\
    r(c2,13,8d,f6), r(e8,b8,d8,90), r(5e,f7,39,2e), r(f5,af,c3,82),\
    r(be,80,5d,9f), r(7c,93,d0,69), r(a9,2d,d5,6f), r(b3,12,25,cf),\
    r(3b,99,ac,c8), r(a7,7d,18,10), r(6e,63,9c,e8), r(7b,bb,3b,db),\
    r(09,78,26,cd), r(f4,18,59,6e), r(01,b7,9a,ec), r(a8,9a,4f,83),\
    r(65,6e,95,e6), r(7e,e6,ff,aa), r(08,cf,bc,21), r(e6,e8,15,ef),\
    r(d9,9b,e7,ba), r(ce,36,6f,4a), r(d4,09,9f,ea), r(d6,7c,b0,29),\
    r(af,b2,a4,31), r(31,23,3f,2a), r(30,94,a5,c6), r(c0,66,a2,35),\
    r(37,bc,4e,74), r(a6,ca,82,fc), r(b0,d0,90,e0), r(15,d8,a7,33),\
    r(4a,98,04,f1), r(f7,da,ec,41), r(0e,50,cd,7f), r(2f,f6,91,17),\
    r(8d,d6,4d,76), r(4d,b0,ef,43), r(54,4d,aa,cc), r(df,04,96,e4),\
    r(e3,b5,d1,9e), r(1b,88,6a,4c), r(b8,1f,2c,c1), r(7f,51,65,46),\
    r(04,ea,5e,9d), r(5d,35,8c,01), r(73,74,87,fa), r(2e,41,0b,fb),\
    r(5a,1d,67,b3), r(52,d2,db,92), r(33,56,10,e9), r(13,47,d6,6d),\
    r(8c,61,d7,9a), r(7a,0c,a1,37), r(8e,14,f8,59), r(89,3c,13,eb),\
    r(ee,27,a9,ce), r(35,c9,61,b7), r(ed,e5,1c,e1), r(3c,b1,47,7a),\
    r(59,df,d2,9c), r(3f,73,f2,55), r(79,ce,14,18), r(bf,37,c7,73),\
    r(ea,cd,f7,53), r(5b,aa,fd,5f), r(14,6f,3d,df), r(86,db,44,78),\
    r(81,f3,af,ca), r(3e,c4,68,b9), r(2c,34,24,38), r(5f,40,a3,c2),\
    r(72,c3,1d,16), r(0c,25,e2,bc), r(8b,49,3c,28), r(41,95,0d,ff),\
    r(71,01,a8,39), r(de,b3,0c,08), r(9c,e4,b4,d8), r(90,c1,56,64),\
    r(61,84,cb,7b), r(70,b6,32,d5), r(74,5c,6c,48), r(42,57,b8,d0)

// generate the required tables in the desired endian format

#undef  r
#define r   r0

#if defined(ONE_TABLE)
static const u_int32_t ft_tab[256] =
    {   f_table };
#elif defined(FOUR_TABLES)
static const u_int32_t ft_tab[4][256] =
{   {   f_table },
#undef  r
#define r   r1
    {   f_table },
#undef  r
#define r   r2
    {   f_table },
#undef  r
#define r   r3
    {   f_table }
};
#endif

#undef  r
#define r   r0
#if defined(ONE_TABLE)
static const u_int32_t it_tab[256] =
    {   i_table };
#elif defined(FOUR_TABLES)
static const u_int32_t it_tab[4][256] =
{   {   i_table },
#undef  r
#define r   r1
    {   i_table },
#undef  r
#define r   r2
    {   i_table },
#undef  r
#define r   r3
    {   i_table }
};
#endif

#endif

#if defined(FIXED_TABLES) && (defined(ONE_LR_TABLE) || defined(FOUR_LR_TABLES)) 

//  data for inverse tables (last round)

#define li_table    \
    w(52), w(09), w(6a), w(d5), w(30), w(36), w(a5), w(38),\
    w(bf), w(40), w(a3), w(9e), w(81), w(f3), w(d7), w(fb),\
    w(7c), w(e3), w(39), w(82), w(9b), w(2f), w(ff), w(87),\
    w(34), w(8e), w(43), w(44), w(c4), w(de), w(e9), w(cb),\
    w(54), w(7b), w(94), w(32), w(a6), w(c2), w(23), w(3d),\
    w(ee), w(4c), w(95), w(0b), w(42), w(fa), w(c3), w(4e),\
    w(08), w(2e), w(a1), w(66), w(28), w(d9), w(24), w(b2),\
    w(76), w(5b), w(a2), w(49), w(6d), w(8b), w(d1), w(25),\
    w(72), w(f8), w(f6), w(64), w(86), w(68), w(98), w(16),\
    w(d4), w(a4), w(5c), w(cc), w(5d), w(65), w(b6), w(92),\
    w(6c), w(70), w(48), w(50), w(fd), w(ed), w(b9), w(da),\
    w(5e), w(15), w(46), w(57), w(a7), w(8d), w(9d), w(84),\
    w(90), w(d8), w(ab), w(00), w(8c), w(bc), w(d3), w(0a),\
    w(f7), w(e4), w(58), w(05), w(b8), w(b3), w(45), w(06),\
    w(d0), w(2c), w(1e), w(8f), w(ca), w(3f), w(0f), w(02),\
    w(c1), w(af), w(bd), w(03), w(01), w(13), w(8a), w(6b),\
    w(3a), w(91), w(11), w(41), w(4f), w(67), w(dc), w(ea),\
    w(97), w(f2), w(cf), w(ce), w(f0), w(b4), w(e6), w(73),\
    w(96), w(ac), w(74), w(22), w(e7), w(ad), w(35), w(85),\
    w(e2), w(f9), w(37), w(e8), w(1c), w(75), w(df), w(6e),\
    w(47), w(f1), w(1a), w(71), w(1d), w(29), w(c5), w(89),\
    w(6f), w(b7), w(62), w(0e), w(aa), w(18), w(be), w(1b),\
    w(fc), w(56), w(3e), w(4b), w(c6), w(d2), w(79), w(20),\
    w(9a), w(db), w(c0), w(fe), w(78), w(cd), w(5a), w(f4),\
    w(1f), w(dd), w(a8), w(33), w(88), w(07), w(c7), w(31),\
    w(b1), w(12), w(10), w(59), w(27), w(80), w(ec), w(5f),\
    w(60), w(51), w(7f), w(a9), w(19), w(b5), w(4a), w(0d),\
    w(2d), w(e5), w(7a), w(9f), w(93), w(c9), w(9c), w(ef),\
    w(a0), w(e0), w(3b), w(4d), w(ae), w(2a), w(f5), w(b0),\
    w(c8), w(eb), w(bb), w(3c), w(83), w(53), w(99), w(61),\
    w(17), w(2b), w(04), w(7e), w(ba), w(77), w(d6), w(26),\
    w(e1), w(69), w(14), w(63), w(55), w(21), w(0c), w(7d),

// generate the required tables in the desired endian format

#undef  r
#define r(p,q,r,s)  w0(q)
#if defined(ONE_LR_TABLE)
static const u_int32_t fl_tab[256] =
    {   f_table     };
#elif defined(FOUR_LR_TABLES)
static const u_int32_t fl_tab[4][256] =
{   {   f_table    },
#undef  r
#define r(p,q,r,s)   w1(q)
    {   f_table    },
#undef  r
#define r(p,q,r,s)   w2(q)
    {   f_table    },
#undef  r
#define r(p,q,r,s)   w3(q)
    {   f_table    }
};
#endif

#undef  w
#define w   w0
#if defined(ONE_LR_TABLE)
static const u_int32_t il_tab[256] =
    {   li_table    };
#elif defined(FOUR_LR_TABLES)
static const u_int32_t il_tab[4][256] =
{   {   li_table    },
#undef  w
#define w   w1
    {   li_table    },
#undef  w
#define w   w2
    {   li_table    },
#undef  w
#define w   w3
    {   li_table    }
};
#endif

#endif

#if defined(FIXED_TABLES) && (defined(ONE_IM_TABLE) || defined(FOUR_IM_TABLES)) 

#define m_table \
    r(00,00,00,00), r(0b,0d,09,0e), r(16,1a,12,1c), r(1d,17,1b,12),\
    r(2c,34,24,38), r(27,39,2d,36), r(3a,2e,36,24), r(31,23,3f,2a),\
    r(58,68,48,70), r(53,65,41,7e), r(4e,72,5a,6c), r(45,7f,53,62),\
    r(74,5c,6c,48), r(7f,51,65,46), r(62,46,7e,54), r(69,4b,77,5a),\
    r(b0,d0,90,e0), r(bb,dd,99,ee), r(a6,ca,82,fc), r(ad,c7,8b,f2),\
    r(9c,e4,b4,d8), r(97,e9,bd,d6), r(8a,fe,a6,c4), r(81,f3,af,ca),\
    r(e8,b8,d8,90), r(e3,b5,d1,9e), r(fe,a2,ca,8c), r(f5,af,c3,82),\
    r(c4,8c,fc,a8), r(cf,81,f5,a6), r(d2,96,ee,b4), r(d9,9b,e7,ba),\
    r(7b,bb,3b,db), r(70,b6,32,d5), r(6d,a1,29,c7), r(66,ac,20,c9),\
    r(57,8f,1f,e3), r(5c,82,16,ed), r(41,95,0d,ff), r(4a,98,04,f1),\
    r(23,d3,73,ab), r(28,de,7a,a5), r(35,c9,61,b7), r(3e,c4,68,b9),\
    r(0f,e7,57,93), r(04,ea,5e,9d), r(19,fd,45,8f), r(12,f0,4c,81),\
    r(cb,6b,ab,3b), r(c0,66,a2,35), r(dd,71,b9,27), r(d6,7c,b0,29),\
    r(e7,5f,8f,03), r(ec,52,86,0d), r(f1,45,9d,1f), r(fa,48,94,11),\
    r(93,03,e3,4b), r(98,0e,ea,45), r(85,19,f1,57), r(8e,14,f8,59),\
    r(bf,37,c7,73), r(b4,3a,ce,7d), r(a9,2d,d5,6f), r(a2,20,dc,61),\
    r(f6,6d,76,ad), r(fd,60,7f,a3), r(e0,77,64,b1), r(eb,7a,6d,bf),\
    r(da,59,52,95), r(d1,54,5b,9b), r(cc,43,40,89), r(c7,4e,49,87),\
    r(ae,05,3e,dd), r(a5,08,37,d3), r(b8,1f,2c,c1), r(b3,12,25,cf),\
    r(82,31,1a,e5), r(89,3c,13,eb), r(94,2b,08,f9), r(9f,26,01,f7),\
    r(46,bd,e6,4d), r(4d,b0,ef,43), r(50,a7,f4,51), r(5b,aa,fd,5f),\
    r(6a,89,c2,75), r(61,84,cb,7b), r(7c,93,d0,69), r(77,9e,d9,67),\
    r(1e,d5,ae,3d), r(15,d8,a7,33), r(08,cf,bc,21), r(03,c2,b5,2f),\
    r(32,e1,8a,05), r(39,ec,83,0b), r(24,fb,98,19), r(2f,f6,91,17),\
    r(8d,d6,4d,76), r(86,db,44,78), r(9b,cc,5f,6a), r(90,c1,56,64),\
    r(a1,e2,69,4e), r(aa,ef,60,40), r(b7,f8,7b,52), r(bc,f5,72,5c),\
    r(d5,be,05,06), r(de,b3,0c,08), r(c3,a4,17,1a), r(c8,a9,1e,14),\
    r(f9,8a,21,3e), r(f2,87,28,30), r(ef,90,33,22), r(e4,9d,3a,2c),\
    r(3d,06,dd,96), r(36,0b,d4,98), r(2b,1c,cf,8a), r(20,11,c6,84),\
    r(11,32,f9,ae), r(1a,3f,f0,a0), r(07,28,eb,b2), r(0c,25,e2,bc),\
    r(65,6e,95,e6), r(6e,63,9c,e8), r(73,74,87,fa), r(78,79,8e,f4),\
    r(49,5a,b1,de), r(42,57,b8,d0), r(5f,40,a3,c2), r(54,4d,aa,cc),\
    r(f7,da,ec,41), r(fc,d7,e5,4f), r(e1,c0,fe,5d), r(ea,cd,f7,53),\
    r(db,ee,c8,79), r(d0,e3,c1,77), r(cd,f4,da,65), r(c6,f9,d3,6b),\
    r(af,b2,a4,31), r(a4,bf,ad,3f), r(b9,a8,b6,2d), r(b2,a5,bf,23),\
    r(83,86,80,09), r(88,8b,89,07), r(95,9c,92,15), r(9e,91,9b,1b),\
    r(47,0a,7c,a1), r(4c,07,75,af), r(51,10,6e,bd), r(5a,1d,67,b3),\
    r(6b,3e,58,99), r(60,33,51,97), r(7d,24,4a,85), r(76,29,43,8b),\
    r(1f,62,34,d1), r(14,6f,3d,df), r(09,78,26,cd), r(02,75,2f,c3),\
    r(33,56,10,e9), r(38,5b,19,e7), r(25,4c,02,f5), r(2e,41,0b,fb),\
    r(8c,61,d7,9a), r(87,6c,de,94), r(9a,7b,c5,86), r(91,76,cc,88),\
    r(a0,55,f3,a2), r(ab,58,fa,ac), r(b6,4f,e1,be), r(bd,42,e8,b0),\
    r(d4,09,9f,ea), r(df,04,96,e4), r(c2,13,8d,f6), r(c9,1e,84,f8),\
    r(f8,3d,bb,d2), r(f3,30,b2,dc), r(ee,27,a9,ce), r(e5,2a,a0,c0),\
    r(3c,b1,47,7a), r(37,bc,4e,74), r(2a,ab,55,66), r(21,a6,5c,68),\
    r(10,85,63,42), r(1b,88,6a,4c), r(06,9f,71,5e), r(0d,92,78,50),\
    r(64,d9,0f,0a), r(6f,d4,06,04), r(72,c3,1d,16), r(79,ce,14,18),\
    r(48,ed,2b,32), r(43,e0,22,3c), r(5e,f7,39,2e), r(55,fa,30,20),\
    r(01,b7,9a,ec), r(0a,ba,93,e2), r(17,ad,88,f0), r(1c,a0,81,fe),\
    r(2d,83,be,d4), r(26,8e,b7,da), r(3b,99,ac,c8), r(30,94,a5,c6),\
    r(59,df,d2,9c), r(52,d2,db,92), r(4f,c5,c0,80), r(44,c8,c9,8e),\
    r(75,eb,f6,a4), r(7e,e6,ff,aa), r(63,f1,e4,b8), r(68,fc,ed,b6),\
    r(b1,67,0a,0c), r(ba,6a,03,02), r(a7,7d,18,10), r(ac,70,11,1e),\
    r(9d,53,2e,34), r(96,5e,27,3a), r(8b,49,3c,28), r(80,44,35,26),\
    r(e9,0f,42,7c), r(e2,02,4b,72), r(ff,15,50,60), r(f4,18,59,6e),\
    r(c5,3b,66,44), r(ce,36,6f,4a), r(d3,21,74,58), r(d8,2c,7d,56),\
    r(7a,0c,a1,37), r(71,01,a8,39), r(6c,16,b3,2b), r(67,1b,ba,25),\
    r(56,38,85,0f), r(5d,35,8c,01), r(40,22,97,13), r(4b,2f,9e,1d),\
    r(22,64,e9,47), r(29,69,e0,49), r(34,7e,fb,5b), r(3f,73,f2,55),\
    r(0e,50,cd,7f), r(05,5d,c4,71), r(18,4a,df,63), r(13,47,d6,6d),\
    r(ca,dc,31,d7), r(c1,d1,38,d9), r(dc,c6,23,cb), r(d7,cb,2a,c5),\
    r(e6,e8,15,ef), r(ed,e5,1c,e1), r(f0,f2,07,f3), r(fb,ff,0e,fd),\
    r(92,b4,79,a7), r(99,b9,70,a9), r(84,ae,6b,bb), r(8f,a3,62,b5),\
    r(be,80,5d,9f), r(b5,8d,54,91), r(a8,9a,4f,83), r(a3,97,46,8d)

#undef r
#define r   r0

#if defined(ONE_IM_TABLE)
static const u_int32_t im_tab[256] =
    {   m_table };
#elif defined(FOUR_IM_TABLES)
static const u_int32_t im_tab[4][256] =
{   {   m_table },
#undef  r
#define r   r1
    {   m_table },
#undef  r
#define r   r2
    {   m_table },
#undef  r
#define r   r3
    {   m_table }
};
#endif

#endif

#else

static int tab_gen = 0;

static unsigned char  s_box[256];            // the S box
static unsigned char  inv_s_box[256];        // the inverse S box
static u_int32_t  rcon_tab[AES_RC_LENGTH];   // table of round constants

#if defined(ONE_TABLE)
static u_int32_t  ft_tab[256];
static u_int32_t  it_tab[256];
#elif defined(FOUR_TABLES)
static u_int32_t  ft_tab[4][256];
static u_int32_t  it_tab[4][256];
#endif

#if defined(ONE_LR_TABLE)
static u_int32_t  fl_tab[256];
static u_int32_t  il_tab[256];
#elif defined(FOUR_LR_TABLES)
static u_int32_t  fl_tab[4][256];
static u_int32_t  il_tab[4][256];
#endif

#if defined(ONE_IM_TABLE)
static u_int32_t  im_tab[256];
#elif defined(FOUR_IM_TABLES)
static u_int32_t  im_tab[4][256];
#endif

// Generate the tables for the dynamic table option

#if !defined(FF_TABLES)

// It will generally be sensible to use tables to compute finite 
// field multiplies and inverses but where memory is scarse this 
// code might sometimes be better.

// return 2 ^ (n - 1) where n is the bit number of the highest bit
// set in x with x in the range 1 < x < 0x00000200.   This form is
// used so that locals within FFinv can be bytes rather than words

static unsigned char hibit(const u_int32_t x)
{   unsigned char r = (unsigned char)((x >> 1) | (x >> 2));
    
    r |= (r >> 2);
    r |= (r >> 4);
    return (r + 1) >> 1;
}

// return the inverse of the finite field element x

static unsigned char FFinv(const unsigned char x)
{   unsigned char    p1 = x, p2 = 0x1b, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;

    if(x < 2) return x;

    for(;;)
    {
        if(!n1) return v1;

        while(n2 >= n1)
        {   
            n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
        }
        
        if(!n2) return v2;

        while(n1 >= n2)
        {   
            n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
        }
    }
}

// define the finite field multiplies required for Rijndael

#define FFmul02(x)  ((((x) & 0x7f) << 1) ^ ((x) & 0x80 ? 0x1b : 0))
#define FFmul03(x)  ((x) ^ FFmul02(x))
#define FFmul09(x)  ((x) ^ FFmul02(FFmul02(FFmul02(x))))
#define FFmul0b(x)  ((x) ^ FFmul02((x) ^ FFmul02(FFmul02(x))))
#define FFmul0d(x)  ((x) ^ FFmul02(FFmul02((x) ^ FFmul02(x))))
#define FFmul0e(x)  FFmul02((x) ^ FFmul02((x) ^ FFmul02(x)))

#else

#define FFinv(x)    ((x) ? pow[255 - log[x]]: 0)

#define FFmul02(x) (x ? pow[log[x] + 0x19] : 0)
#define FFmul03(x) (x ? pow[log[x] + 0x01] : 0)
#define FFmul09(x) (x ? pow[log[x] + 0xc7] : 0)
#define FFmul0b(x) (x ? pow[log[x] + 0x68] : 0)
#define FFmul0d(x) (x ? pow[log[x] + 0xee] : 0)
#define FFmul0e(x) (x ? pow[log[x] + 0xdf] : 0)

#endif

// The forward and inverse affine transformations used in the S-box

#define fwd_affine(x) \
    (w = (u_int32_t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(unsigned char)(w^(w>>8)))

#define inv_affine(x) \
    (w = (u_int32_t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(unsigned char)(w^(w>>8)))

static void gen_tabs(void)
{   u_int32_t  i, w;

#if defined(FF_TABLES)

    unsigned char  pow[512], log[256];

    // log and power tables for GF(2^8) finite field with
    // 0x011b as modular polynomial - the simplest primitive
    // root is 0x03, used here to generate the tables

    i = 0; w = 1; 
    do
    {   
        pow[i] = (unsigned char)w;
        pow[i + 255] = (unsigned char)w;
        log[w] = (unsigned char)i++;
        w ^=  (w << 1) ^ (w & ff_hi ? ff_poly : 0);
    }
    while (w != 1);

#endif

    for(i = 0, w = 1; i < AES_RC_LENGTH; ++i)
    {
        rcon_tab[i] = bytes2word(w, 0, 0, 0);
        w = (w << 1) ^ (w & ff_hi ? ff_poly : 0);
    }

    for(i = 0; i < 256; ++i)
    {   unsigned char    b;

        s_box[i] = b = fwd_affine(FFinv((unsigned char)i));

        w = bytes2word(b, 0, 0, 0);
#if defined(ONE_LR_TABLE)
        fl_tab[i] = w;
#elif defined(FOUR_LR_TABLES)
        fl_tab[0][i] = w;
        fl_tab[1][i] = upr(w,1);
        fl_tab[2][i] = upr(w,2);
        fl_tab[3][i] = upr(w,3);
#endif
        w = bytes2word(FFmul02(b), b, b, FFmul03(b));
#if defined(ONE_TABLE)
        ft_tab[i] = w;
#elif defined(FOUR_TABLES)
        ft_tab[0][i] = w;
        ft_tab[1][i] = upr(w,1);
        ft_tab[2][i] = upr(w,2);
        ft_tab[3][i] = upr(w,3);
#endif
        inv_s_box[i] = b = FFinv(inv_affine((unsigned char)i));

        w = bytes2word(b, 0, 0, 0);
#if defined(ONE_LR_TABLE)
        il_tab[i] = w;
#elif defined(FOUR_LR_TABLES)
        il_tab[0][i] = w;
        il_tab[1][i] = upr(w,1);
        il_tab[2][i] = upr(w,2);
        il_tab[3][i] = upr(w,3);
#endif
        w = bytes2word(FFmul0e(b), FFmul09(b), FFmul0d(b), FFmul0b(b));
#if defined(ONE_TABLE)
        it_tab[i] = w;
#elif defined(FOUR_TABLES)
        it_tab[0][i] = w;
        it_tab[1][i] = upr(w,1);
        it_tab[2][i] = upr(w,2);
        it_tab[3][i] = upr(w,3);
#endif
#if defined(ONE_IM_TABLE)
        im_tab[b] = w;
#elif defined(FOUR_IM_TABLES)
        im_tab[0][b] = w;
        im_tab[1][b] = upr(w,1);
        im_tab[2][b] = upr(w,2);
        im_tab[3][b] = upr(w,3);
#endif

    }
}

#endif

#define no_table(x,box,vf,rf,c) bytes2word( \
    box[bval(vf(x,0,c),rf(0,c))], \
    box[bval(vf(x,1,c),rf(1,c))], \
    box[bval(vf(x,2,c),rf(2,c))], \
    box[bval(vf(x,3,c),rf(3,c))])

#define one_table(x,op,tab,vf,rf,c) \
 (     tab[bval(vf(x,0,c),rf(0,c))] \
  ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
  ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
  ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))

#define four_tables(x,tab,vf,rf,c) \
 (  tab[0][bval(vf(x,0,c),rf(0,c))] \
  ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
  ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
  ^ tab[3][bval(vf(x,3,c),rf(3,c))])

#define vf1(x,r,c)  (x)
#define rf1(r,c)    (r)
#define rf2(r,c)    ((r-c)&3)

#if defined(FOUR_LR_TABLES)
#define ls_box(x,c)     four_tables(x,fl_tab,vf1,rf2,c)
#elif defined(ONE_LR_TABLE)
#define ls_box(x,c)     one_table(x,upr,fl_tab,vf1,rf2,c)
#else
#define ls_box(x,c)     no_table(x,s_box,vf1,rf2,c)
#endif

#if defined(FOUR_IM_TABLES)
#define inv_mcol(x)     four_tables(x,im_tab,vf1,rf1,0)
#elif defined(ONE_IM_TABLE)
#define inv_mcol(x)     one_table(x,upr,im_tab,vf1,rf1,0)
#else
#define inv_mcol(x) \
    (f9 = (x),f2 = FFmulX(f9), f4 = FFmulX(f2), f8 = FFmulX(f4), f9 ^= f8, \
    f2 ^= f4 ^ f8 ^ upr(f2 ^ f9,3) ^ upr(f4 ^ f9,2) ^ upr(f9,1))
#endif

#define nc   (AES_BLOCK_SIZE/4)

// Initialise the key schedule from the user supplied key. The key
// length is now specified in bytes - 16, 24 or 32 as appropriate.
// This corresponds to bit lengths of 128, 192 and 256 bits, and
// to Nk values of 4, 6 and 8 respectively.

#define mx(t,f) (*t++ = inv_mcol(*f),f++)
#define cp(t,f) *t++ = *f++

#if   AES_BLOCK_SIZE == 16
#define cpy(d,s)    cp(d,s); cp(d,s); cp(d,s); cp(d,s)
#define mix(d,s)    mx(d,s); mx(d,s); mx(d,s); mx(d,s)
#elif AES_BLOCK_SIZE == 24
#define cpy(d,s)    cp(d,s); cp(d,s); cp(d,s); cp(d,s); \
                    cp(d,s); cp(d,s)
#define mix(d,s)    mx(d,s); mx(d,s); mx(d,s); mx(d,s); \
                    mx(d,s); mx(d,s)
#elif AES_BLOCK_SIZE == 32
#define cpy(d,s)    cp(d,s); cp(d,s); cp(d,s); cp(d,s); \
                    cp(d,s); cp(d,s); cp(d,s); cp(d,s)
#define mix(d,s)    mx(d,s); mx(d,s); mx(d,s); mx(d,s); \
                    mx(d,s); mx(d,s); mx(d,s); mx(d,s)
#else

#define cpy(d,s) \
switch(nc) \
{   case 8: cp(d,s); cp(d,s); \
    case 6: cp(d,s); cp(d,s); \
    case 4: cp(d,s); cp(d,s); \
            cp(d,s); cp(d,s); \
}

#define mix(d,s) \
switch(nc) \
{   case 8: mx(d,s); mx(d,s); \
    case 6: mx(d,s); mx(d,s); \
    case 4: mx(d,s); mx(d,s); \
            mx(d,s); mx(d,s); \
}

#endif

// y = output word, x = input word, r = row, c = column
// for r = 0, 1, 2 and 3 = column accessed for row r

#if defined(ARRAYS)
#define s(x,c) x[c]
#else
#define s(x,c) x##c
#endif

// I am grateful to Frank Yellin for the following constructions
// which, given the column (c) of the output state variable that
// is being computed, return the input state variables which are
// needed for each row (r) of the state

// For the fixed block size options, compilers reduce these two 
// expressions to fixed variable references. For variable block 
// size code conditional clauses will sometimes be returned

#define unused  77  // Sunset Strip

#define fwd_var(x,r,c) \
 ( r==0 ?			\
    ( c==0 ? s(x,0) \
    : c==1 ? s(x,1) \
    : c==2 ? s(x,2) \
    : c==3 ? s(x,3) \
    : c==4 ? s(x,4) \
    : c==5 ? s(x,5) \
    : c==6 ? s(x,6) \
    : s(x,7))		\
 : r==1 ?			\
    ( c==0 ? s(x,1) \
    : c==1 ? s(x,2) \
    : c==2 ? s(x,3) \
    : c==3 ? nc==4 ? s(x,0) : s(x,4) \
    : c==4 ? s(x,5) \
    : c==5 ? nc==8 ? s(x,6) : s(x,0) \
    : c==6 ? s(x,7) \
    : s(x,0))		\
 : r==2 ?			\
    ( c==0 ? nc==8 ? s(x,3) : s(x,2) \
    : c==1 ? nc==8 ? s(x,4) : s(x,3) \
    : c==2 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \
    : c==3 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \
    : c==4 ? nc==8 ? s(x,7) : s(x,0) \
    : c==5 ? nc==8 ? s(x,0) : s(x,1) \
    : c==6 ? s(x,1) \
    : s(x,2))		\
 :					\
    ( c==0 ? nc==8 ? s(x,4) : s(x,3) \
    : c==1 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \
    : c==2 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \
    : c==3 ? nc==4 ? s(x,2) : nc==8 ? s(x,7) : s(x,0) \
    : c==4 ? nc==8 ? s(x,0) : s(x,1) \
    : c==5 ? nc==8 ? s(x,1) : s(x,2) \
    : c==6 ? s(x,2) \
    : s(x,3)))

#define inv_var(x,r,c) \
 ( r==0 ?			\
    ( c==0 ? s(x,0) \
    : c==1 ? s(x,1) \
    : c==2 ? s(x,2) \
    : c==3 ? s(x,3) \
    : c==4 ? s(x,4) \
    : c==5 ? s(x,5) \
    : c==6 ? s(x,6) \
    : s(x,7))		\
 : r==1 ?			\
    ( c==0 ? nc==4 ? s(x,3) : nc==8 ? s(x,7) : s(x,5) \
    : c==1 ? s(x,0) \
    : c==2 ? s(x,1) \
    : c==3 ? s(x,2) \
    : c==4 ? s(x,3) \
    : c==5 ? s(x,4) \
    : c==6 ? s(x,5) \
    : s(x,6))		\
 : r==2 ?			\
    ( c==0 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \
    : c==1 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \
    : c==2 ? nc==8 ? s(x,7) : s(x,0) \
    : c==3 ? nc==8 ? s(x,0) : s(x,1) \
    : c==4 ? nc==8 ? s(x,1) : s(x,2) \
    : c==5 ? nc==8 ? s(x,2) : s(x,3) \
    : c==6 ? s(x,3) \
    : s(x,4))		\
 :					\
    ( c==0 ? nc==4 ? s(x,1) : nc==8 ? s(x,4) : s(x,3) \
    : c==1 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \
    : c==2 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \
    : c==3 ? nc==8 ? s(x,7) : s(x,0) \
    : c==4 ? nc==8 ? s(x,0) : s(x,1) \
    : c==5 ? nc==8 ? s(x,1) : s(x,2) \
    : c==6 ? s(x,2) \
    : s(x,3)))

#define si(y,x,k,c) s(y,c) = const_word_in(x + 4 * c) ^ k[c]
#define so(y,x,c)   word_out(y + 4 * c, s(x,c))

#if defined(FOUR_TABLES)
#define fwd_rnd(y,x,k,c)    s(y,c)= (k)[c] ^ four_tables(x,ft_tab,fwd_var,rf1,c)
#define inv_rnd(y,x,k,c)    s(y,c)= (k)[c] ^ four_tables(x,it_tab,inv_var,rf1,c)
#elif defined(ONE_TABLE)
#define fwd_rnd(y,x,k,c)    s(y,c)= (k)[c] ^ one_table(x,upr,ft_tab,fwd_var,rf1,c)
#define inv_rnd(y,x,k,c)    s(y,c)= (k)[c] ^ one_table(x,upr,it_tab,inv_var,rf1,c)
#else
#define fwd_rnd(y,x,k,c)    s(y,c) = fwd_mcol(no_table(x,s_box,fwd_var,rf1,c)) ^ (k)[c]
#define inv_rnd(y,x,k,c)    s(y,c) = inv_mcol(no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c])
#endif

#if defined(FOUR_LR_TABLES)
#define fwd_lrnd(y,x,k,c)   s(y,c)= (k)[c] ^ four_tables(x,fl_tab,fwd_var,rf1,c)
#define inv_lrnd(y,x,k,c)   s(y,c)= (k)[c] ^ four_tables(x,il_tab,inv_var,rf1,c)
#elif defined(ONE_LR_TABLE)
#define fwd_lrnd(y,x,k,c)   s(y,c)= (k)[c] ^ one_table(x,ups,fl_tab,fwd_var,rf1,c)
#define inv_lrnd(y,x,k,c)   s(y,c)= (k)[c] ^ one_table(x,ups,il_tab,inv_var,rf1,c)
#else
#define fwd_lrnd(y,x,k,c)   s(y,c) = no_table(x,s_box,fwd_var,rf1,c) ^ (k)[c]
#define inv_lrnd(y,x,k,c)   s(y,c) = no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c]
#endif

#if AES_BLOCK_SIZE == 16

#if defined(ARRAYS)
#define locals(y,x)     x[4],y[4]
#else
#define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
// the following defines prevent the compiler requiring the declaration
// of generated but unused variables in the fwd_var and inv_var macros
#define b04 unused
#define b05 unused
#define b06 unused
#define b07 unused
#define b14 unused
#define b15 unused
#define b16 unused
#define b17 unused
#endif
#define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
                        s(y,2) = s(x,2); s(y,3) = s(x,3);
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
#define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)

#elif AES_BLOCK_SIZE == 24

#if defined(ARRAYS)
#define locals(y,x)     x[6],y[6]
#else
#define locals(y,x)     x##0,x##1,x##2,x##3,x##4,x##5, \
                        y##0,y##1,y##2,y##3,y##4,y##5
#define b06 unused
#define b07 unused
#define b16 unused
#define b17 unused
#endif
#define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
                        s(y,2) = s(x,2); s(y,3) = s(x,3); \
                        s(y,4) = s(x,4); s(y,5) = s(x,5);
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); \
                        si(y,x,k,3); si(y,x,k,4); si(y,x,k,5)
#define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); \
                        so(y,x,3); so(y,x,4); so(y,x,5)
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); \
                        rm(y,x,k,3); rm(y,x,k,4); rm(y,x,k,5)
#else

#if defined(ARRAYS)
#define locals(y,x)     x[8],y[8]
#else
#define locals(y,x)     x##0,x##1,x##2,x##3,x##4,x##5,x##6,x##7, \
                        y##0,y##1,y##2,y##3,y##4,y##5,y##6,y##7
#endif
#define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
                        s(y,2) = s(x,2); s(y,3) = s(x,3); \
                        s(y,4) = s(x,4); s(y,5) = s(x,5); \
                        s(y,6) = s(x,6); s(y,7) = s(x,7);

#if AES_BLOCK_SIZE == 32

#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3); \
                        si(y,x,k,4); si(y,x,k,5); si(y,x,k,6); si(y,x,k,7)
#define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3); \
                        so(y,x,4); so(y,x,5); so(y,x,6); so(y,x,7)
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3); \
                        rm(y,x,k,4); rm(y,x,k,5); rm(y,x,k,6); rm(y,x,k,7)
#else

#define state_in(y,x,k) \
switch(nc) \
{   case 8: si(y,x,k,7); si(y,x,k,6); \
    case 6: si(y,x,k,5); si(y,x,k,4); \
    case 4: si(y,x,k,3); si(y,x,k,2); \
            si(y,x,k,1); si(y,x,k,0); \
}

#define state_out(y,x) \
switch(nc) \
{   case 8: so(y,x,7); so(y,x,6); \
    case 6: so(y,x,5); so(y,x,4); \
    case 4: so(y,x,3); so(y,x,2); \
            so(y,x,1); so(y,x,0); \
}

#if defined(FAST_VARIABLE)

#define round(rm,y,x,k) \
switch(nc) \
{   case 8: rm(y,x,k,7); rm(y,x,k,6); \
            rm(y,x,k,5); rm(y,x,k,4); \
            rm(y,x,k,3); rm(y,x,k,2); \
            rm(y,x,k,1); rm(y,x,k,0); \
            break; \
    case 6: rm(y,x,k,5); rm(y,x,k,4); \
            rm(y,x,k,3); rm(y,x,k,2); \
            rm(y,x,k,1); rm(y,x,k,0); \
            break; \
    case 4: rm(y,x,k,3); rm(y,x,k,2); \
            rm(y,x,k,1); rm(y,x,k,0); \
            break; \
}
#else

#define round(rm,y,x,k) \
switch(nc) \
{   case 8: rm(y,x,k,7); rm(y,x,k,6); \
    case 6: rm(y,x,k,5); rm(y,x,k,4); \
    case 4: rm(y,x,k,3); rm(y,x,k,2); \
            rm(y,x,k,1); rm(y,x,k,0); \
}

#endif

#endif
#endif

/**
 * Encrypt a single block of data.
 */
static void encrypt_block(const private_aes_crypter_t *this, const unsigned char in_blk[], unsigned char out_blk[])
{   u_int32_t        locals(b0, b1);
    const u_int32_t  *kp = this->aes_e_key;

#if !defined(ONE_TABLE) && !defined(FOUR_TABLES)
    u_int32_t        f2;
#endif

    state_in(b0, in_blk, kp); kp += nc;

#if defined(UNROLL)

    switch(this->aes_Nrnd)
    {
    case 14:    round(fwd_rnd,  b1, b0, kp         ); 
                round(fwd_rnd,  b0, b1, kp + nc    ); kp += 2 * nc;
    case 12:    round(fwd_rnd,  b1, b0, kp         ); 
                round(fwd_rnd,  b0, b1, kp + nc    ); kp += 2 * nc;
    case 10:    round(fwd_rnd,  b1, b0, kp         );             
                round(fwd_rnd,  b0, b1, kp +     nc);
                round(fwd_rnd,  b1, b0, kp + 2 * nc); 
                round(fwd_rnd,  b0, b1, kp + 3 * nc);
                round(fwd_rnd,  b1, b0, kp + 4 * nc); 
                round(fwd_rnd,  b0, b1, kp + 5 * nc);
                round(fwd_rnd,  b1, b0, kp + 6 * nc); 
                round(fwd_rnd,  b0, b1, kp + 7 * nc);
                round(fwd_rnd,  b1, b0, kp + 8 * nc);
                round(fwd_lrnd, b0, b1, kp + 9 * nc);
    }

#elif defined(PARTIAL_UNROLL)
    {   u_int32_t    rnd;

        for(rnd = 0; rnd < (this->aes_Nrnd >> 1) - 1; ++rnd)
        {
            round(fwd_rnd, b1, b0, kp); 
            round(fwd_rnd, b0, b1, kp + nc); kp += 2 * nc;
        }

        round(fwd_rnd,  b1, b0, kp);
        round(fwd_lrnd, b0, b1, kp + nc);
    }
#else
    {   u_int32_t    rnd;

        for(rnd = 0; rnd < this->aes_Nrnd - 1; ++rnd)
        {
            round(fwd_rnd, b1, b0, kp); 
            l_copy(b0, b1); kp += nc;
        }

        round(fwd_lrnd, b0, b1, kp);
    }
#endif

    state_out(out_blk, b0);
}

/**
 * Decrypt a single block of data.
 */
static void decrypt_block(const private_aes_crypter_t *this, const unsigned char in_blk[], unsigned char out_blk[])
{   u_int32_t        locals(b0, b1);
    const u_int32_t  *kp = this->aes_d_key;

#if !defined(ONE_TABLE) && !defined(FOUR_TABLES)
    u_int32_t        f2, f4, f8, f9; 
#endif

    state_in(b0, in_blk, kp); kp += nc;

#if defined(UNROLL)

    switch(this->aes_Nrnd)
    {
    case 14:    round(inv_rnd,  b1, b0, kp         );
                round(inv_rnd,  b0, b1, kp + nc    ); kp += 2 * nc;
    case 12:    round(inv_rnd,  b1, b0, kp         );
                round(inv_rnd,  b0, b1, kp + nc    ); kp += 2 * nc;
    case 10:    round(inv_rnd,  b1, b0, kp         );             
                round(inv_rnd,  b0, b1, kp +     nc);
                round(inv_rnd,  b1, b0, kp + 2 * nc); 
                round(inv_rnd,  b0, b1, kp + 3 * nc);
                round(inv_rnd,  b1, b0, kp + 4 * nc); 
                round(inv_rnd,  b0, b1, kp + 5 * nc);
                round(inv_rnd,  b1, b0, kp + 6 * nc); 
                round(inv_rnd,  b0, b1, kp + 7 * nc);
                round(inv_rnd,  b1, b0, kp + 8 * nc);
                round(inv_lrnd, b0, b1, kp + 9 * nc);
    }

#elif defined(PARTIAL_UNROLL)
    {   u_int32_t    rnd;

        for(rnd = 0; rnd < (this->aes_Nrnd >> 1) - 1; ++rnd)
        {
            round(inv_rnd, b1, b0, kp); 
            round(inv_rnd, b0, b1, kp + nc); kp += 2 * nc;
        }

        round(inv_rnd,  b1, b0, kp);
        round(inv_lrnd, b0, b1, kp + nc);
    }
#else
    {   u_int32_t    rnd;

        for(rnd = 0; rnd < this->aes_Nrnd - 1; ++rnd)
        {
            round(inv_rnd, b1, b0, kp); 
            l_copy(b0, b1); kp += nc;
        }

        round(inv_lrnd, b0, b1, kp);
    }
#endif

    state_out(out_blk, b0);
}

/**
 * Implementation of crypter_t.decrypt.
 */
static void decrypt(private_aes_crypter_t *this, chunk_t data, chunk_t iv,
					chunk_t *decrypted)
{
	int pos;
	const u_int32_t *iv_i;
	u_int8_t *in, *out;
	
	if (decrypted)
	{
		*decrypted = chunk_alloc(data.len);
		out = decrypted->ptr;
	}
	else
	{
		out = data.ptr;
	}
	in = data.ptr;
	
	pos = data.len-16;
	in += pos;
	out += pos;
	while (pos >= 0)
	{
		decrypt_block(this, in, out);
		if (pos==0)
		{
			iv_i=(const u_int32_t*) (iv.ptr);
		}
		else
		{
			iv_i=(const u_int32_t*) (in-16);
		}
		*((u_int32_t *)(&out[ 0])) ^= iv_i[0];
		*((u_int32_t *)(&out[ 4])) ^= iv_i[1];
		*((u_int32_t *)(&out[ 8])) ^= iv_i[2];
		*((u_int32_t *)(&out[12])) ^= iv_i[3];
		in-=16;
		out-=16;
		pos-=16;
	}
}


/**
 * Implementation of crypter_t.decrypt.
 */
static void encrypt (private_aes_crypter_t *this, chunk_t data, chunk_t iv,
					 chunk_t *encrypted)
{
	int pos;
	const u_int32_t *iv_i;
	u_int8_t *in, *out;
	
	in = data.ptr;
	out = data.ptr;
	if (encrypted)
	{
		*encrypted = chunk_alloc(data.len);
		out = encrypted->ptr;
	}
	
	pos=0;
	while(pos<data.len)
	{
		if (pos==0)
		{
			iv_i=(const u_int32_t*) iv.ptr;
		}
		else
		{
			iv_i=(const u_int32_t*) (out-16);
		}
		*((u_int32_t *)(&out[ 0])) = iv_i[0]^*((const u_int32_t *)(&in[ 0]));
		*((u_int32_t *)(&out[ 4])) = iv_i[1]^*((const u_int32_t *)(&in[ 4]));
		*((u_int32_t *)(&out[ 8])) = iv_i[2]^*((const u_int32_t *)(&in[ 8]));
		*((u_int32_t *)(&out[12])) = iv_i[3]^*((const u_int32_t *)(&in[12]));
		encrypt_block(this, out, out);
		in+=16;
		out+=16;
		pos+=16;
	}
}

/**
 * Implementation of crypter_t.get_block_size.
 */
static size_t get_block_size (private_aes_crypter_t *this)
{
	return AES_BLOCK_SIZE;
}

/**
 * Implementation of crypter_t.get_key_size.
 */
static size_t get_key_size (private_aes_crypter_t *this)
{
	return this->key_size;
}

/**
 * Implementation of crypter_t.set_key.
 */
static void set_key (private_aes_crypter_t *this, chunk_t key)
{
	u_int32_t    *kf, *kt, rci, f = 0;
	u_int8_t *in_key = key.ptr;
	
	this->aes_Nrnd = (this->aes_Nkey > (nc) ? this->aes_Nkey : (nc)) + 6; 
	
	this->aes_e_key[0] = const_word_in(in_key     );
	this->aes_e_key[1] = const_word_in(in_key +  4);
	this->aes_e_key[2] = const_word_in(in_key +  8);
	this->aes_e_key[3] = const_word_in(in_key + 12);
	
	kf = this->aes_e_key; 
	kt = kf + nc * (this->aes_Nrnd + 1) - this->aes_Nkey; 
	rci = 0;
	
	switch(this->aes_Nkey)
	{
	case 4: do
			{   kf[4] = kf[0] ^ ls_box(kf[3],3) ^ rcon_tab[rci++];
				kf[5] = kf[1] ^ kf[4];
				kf[6] = kf[2] ^ kf[5];
				kf[7] = kf[3] ^ kf[6];
				kf += 4;
			}
			while(kf < kt);
			break;
	
	case 6: this->aes_e_key[4] = const_word_in(in_key + 16);
			this->aes_e_key[5] = const_word_in(in_key + 20);
			do
			{   kf[ 6] = kf[0] ^ ls_box(kf[5],3) ^ rcon_tab[rci++];
				kf[ 7] = kf[1] ^ kf[ 6];
				kf[ 8] = kf[2] ^ kf[ 7];
				kf[ 9] = kf[3] ^ kf[ 8];
				kf[10] = kf[4] ^ kf[ 9];
				kf[11] = kf[5] ^ kf[10];
				kf += 6;
			}
			while(kf < kt);
			break;

	case 8: this->aes_e_key[4] = const_word_in(in_key + 16);
			this->aes_e_key[5] = const_word_in(in_key + 20);
			this->aes_e_key[6] = const_word_in(in_key + 24);
			this->aes_e_key[7] = const_word_in(in_key + 28);
			do
			{   kf[ 8] = kf[0] ^ ls_box(kf[7],3) ^ rcon_tab[rci++];
				kf[ 9] = kf[1] ^ kf[ 8];
				kf[10] = kf[2] ^ kf[ 9];
				kf[11] = kf[3] ^ kf[10];
				kf[12] = kf[4] ^ ls_box(kf[11],0);
				kf[13] = kf[5] ^ kf[12];
				kf[14] = kf[6] ^ kf[13];
				kf[15] = kf[7] ^ kf[14];
				kf += 8;
			}
			while (kf < kt);
			break;
	}
	
	if(!f)
    {
		u_int32_t    i;

		kt = this->aes_d_key + nc * this->aes_Nrnd;
		kf = this->aes_e_key;
		
		cpy(kt, kf); kt -= 2 * nc;
		
		for(i = 1; i < this->aes_Nrnd; ++i)
		{ 
#if defined(ONE_TABLE) || defined(FOUR_TABLES)
#if !defined(ONE_IM_TABLE) && !defined(FOUR_IM_TABLES)
			u_int32_t    f2, f4, f8, f9;
#endif
			mix(kt, kf);
#else
			cpy(kt, kf);
#endif
			kt -= 2 * nc;
        }
		cpy(kt, kf);
    }
}

/**
 * Implementation of crypter_t.destroy and aes_crypter_t.destroy.
 */
static void destroy (private_aes_crypter_t *this)
{
	free(this);
}

/*
 * Described in header
 */
aes_crypter_t *aes_crypter_create(encryption_algorithm_t algo, size_t key_size)
{
	private_aes_crypter_t *this;
	
	if (algo != ENCR_AES_CBC)
	{
		return NULL;
	}
	
	this = malloc_thing(private_aes_crypter_t);
	
	#if !defined(FIXED_TABLES)
	if(!tab_gen) { gen_tabs(); tab_gen = 1; }
	#endif
	
	this->key_size = key_size;
	switch(key_size)
	{
	case 32:        /* bytes */
		this->aes_Nkey = 8;
		break;
	case 24:        /* bytes */
		this->aes_Nkey = 6;
		break;
	case 16:        /* bytes */
		this->aes_Nkey = 4;
		break;
	default:
		free(this);
		return NULL;
	}
	
	this->public.crypter_interface.encrypt = (void (*) (crypter_t *, chunk_t,chunk_t, chunk_t *)) encrypt;
	this->public.crypter_interface.decrypt = (void (*) (crypter_t *, chunk_t , chunk_t, chunk_t *)) decrypt;
	this->public.crypter_interface.get_block_size = (size_t (*) (crypter_t *)) get_block_size;
	this->public.crypter_interface.get_key_size = (size_t (*) (crypter_t *)) get_key_size;
	this->public.crypter_interface.set_key = (void (*) (crypter_t *,chunk_t)) set_key;
	this->public.crypter_interface.destroy = (void (*) (crypter_t *)) destroy;
	
	return &(this->public);
}