1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
/*
* Copyright (C) 2012 Tobias Brunner
* HSR Hochschule fuer Technik Rapperswil
* Copyright (C) 2015 Martin Willi
* Copyright (C) 2015 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "aesni_cmac.h"
#include "aesni_key.h"
#include <crypto/prfs/mac_prf.h>
#include <crypto/signers/mac_signer.h>
typedef struct private_mac_t private_mac_t;
/**
* Private data of a mac_t object.
*/
struct private_mac_t {
/**
* Public interface.
*/
mac_t public;
/**
* Key schedule for key K
*/
aesni_key_t *k;
/**
* K1
*/
__m128i k1;
/**
* K2
*/
__m128i k2;
/**
* T
*/
__m128i t;
/**
* remaining, unprocessed bytes in append mode
*/
u_char rem[AES_BLOCK_SIZE];
/**
* number of bytes in remaining
*/
int rem_size;
};
METHOD(mac_t, get_mac, bool,
private_mac_t *this, chunk_t data, uint8_t *out)
{
__m128i *ks, t, l, *bi;
u_int blocks, rem, i;
if (!this->k)
{
return FALSE;
}
ks = this->k->schedule;
t = this->t;
if (this->rem_size + data.len > AES_BLOCK_SIZE)
{
/* T := 0x00000000000000000000000000000000 (initially)
* for each block M_i (except the last)
* X := T XOR M_i;
* T := AES-128(K, X);
*/
/* append data to remaining bytes, process block M_1 */
memcpy(this->rem + this->rem_size, data.ptr,
AES_BLOCK_SIZE - this->rem_size);
data = chunk_skip(data, AES_BLOCK_SIZE - this->rem_size);
t = _mm_xor_si128(t, _mm_loadu_si128((__m128i*)this->rem));
t = _mm_xor_si128(t, ks[0]);
t = _mm_aesenc_si128(t, ks[1]);
t = _mm_aesenc_si128(t, ks[2]);
t = _mm_aesenc_si128(t, ks[3]);
t = _mm_aesenc_si128(t, ks[4]);
t = _mm_aesenc_si128(t, ks[5]);
t = _mm_aesenc_si128(t, ks[6]);
t = _mm_aesenc_si128(t, ks[7]);
t = _mm_aesenc_si128(t, ks[8]);
t = _mm_aesenc_si128(t, ks[9]);
t = _mm_aesenclast_si128(t, ks[10]);
/* process blocks M_2 ... M_n-1 */
bi = (__m128i*)data.ptr;
rem = data.len % AES_BLOCK_SIZE;
blocks = data.len / AES_BLOCK_SIZE;
if (!rem && blocks)
{ /* don't do last block */
rem = AES_BLOCK_SIZE;
blocks--;
}
/* process blocks M[2] ... M[n-1] */
for (i = 0; i < blocks; i++)
{
t = _mm_xor_si128(t, _mm_loadu_si128(bi + i));
t = _mm_xor_si128(t, ks[0]);
t = _mm_aesenc_si128(t, ks[1]);
t = _mm_aesenc_si128(t, ks[2]);
t = _mm_aesenc_si128(t, ks[3]);
t = _mm_aesenc_si128(t, ks[4]);
t = _mm_aesenc_si128(t, ks[5]);
t = _mm_aesenc_si128(t, ks[6]);
t = _mm_aesenc_si128(t, ks[7]);
t = _mm_aesenc_si128(t, ks[8]);
t = _mm_aesenc_si128(t, ks[9]);
t = _mm_aesenclast_si128(t, ks[10]);
}
/* store remaining bytes of block M_n */
memcpy(this->rem, data.ptr + data.len - rem, rem);
this->rem_size = rem;
}
else
{
/* no complete block (or last block), just copy into remaining */
memcpy(this->rem + this->rem_size, data.ptr, data.len);
this->rem_size += data.len;
}
if (out)
{
/* if last block is complete
* M_last := M_n XOR K1;
* else
* M_last := padding(M_n) XOR K2;
*/
if (this->rem_size == AES_BLOCK_SIZE)
{
l = _mm_loadu_si128((__m128i*)this->rem);
l = _mm_xor_si128(l, this->k1);
}
else
{
/* padding(x) = x || 10^i where i is 128-8*r-1
* That is, padding(x) is the concatenation of x and a single '1',
* followed by the minimum number of '0's, so that the total length is
* equal to 128 bits.
*/
if (this->rem_size < AES_BLOCK_SIZE)
{
memset(this->rem + this->rem_size, 0,
AES_BLOCK_SIZE - this->rem_size);
this->rem[this->rem_size] = 0x80;
}
l = _mm_loadu_si128((__m128i*)this->rem);
l = _mm_xor_si128(l, this->k2);
}
/* T := M_last XOR T;
* T := AES-128(K,T);
*/
t = _mm_xor_si128(l, t);
t = _mm_xor_si128(t, ks[0]);
t = _mm_aesenc_si128(t, ks[1]);
t = _mm_aesenc_si128(t, ks[2]);
t = _mm_aesenc_si128(t, ks[3]);
t = _mm_aesenc_si128(t, ks[4]);
t = _mm_aesenc_si128(t, ks[5]);
t = _mm_aesenc_si128(t, ks[6]);
t = _mm_aesenc_si128(t, ks[7]);
t = _mm_aesenc_si128(t, ks[8]);
t = _mm_aesenc_si128(t, ks[9]);
t = _mm_aesenclast_si128(t, ks[10]);
_mm_storeu_si128((__m128i*)out, t);
/* reset state */
t = _mm_setzero_si128();
this->rem_size = 0;
}
this->t = t;
return TRUE;
}
METHOD(mac_t, get_mac_size, size_t,
private_mac_t *this)
{
return AES_BLOCK_SIZE;
}
/**
* Left-shift the given chunk by one bit.
*/
static void bit_shift(chunk_t chunk)
{
size_t i;
for (i = 0; i < chunk.len; i++)
{
chunk.ptr[i] <<= 1;
if (i < chunk.len - 1 && chunk.ptr[i + 1] & 0x80)
{
chunk.ptr[i] |= 0x01;
}
}
}
METHOD(mac_t, set_key, bool,
private_mac_t *this, chunk_t key)
{
__m128i rb, msb, l, a;
u_int round;
chunk_t k;
this->t = _mm_setzero_si128();
this->rem_size = 0;
/* we support variable keys as defined in RFC 4615 */
if (key.len == AES_BLOCK_SIZE)
{
k = key;
}
else
{ /* use cmac recursively to resize longer or shorter keys */
k = chunk_alloca(AES_BLOCK_SIZE);
memset(k.ptr, 0, k.len);
if (!set_key(this, k) || !get_mac(this, key, k.ptr))
{
return FALSE;
}
}
DESTROY_IF(this->k);
this->k = aesni_key_create(TRUE, k);
if (!this->k)
{
return FALSE;
}
/*
* Rb = 0x00000000000000000000000000000087
* L = 0x00000000000000000000000000000000 encrypted with K
* if MSB(L) == 0
* K1 = L << 1
* else
* K1 = (L << 1) XOR Rb
* if MSB(K1) == 0
* K2 = K1 << 1
* else
* K2 = (K1 << 1) XOR Rb
*/
rb = _mm_set_epi32(0x87000000, 0, 0, 0);
msb = _mm_set_epi32(0, 0, 0, 0x80);
l = _mm_setzero_si128();
l = _mm_xor_si128(l, this->k->schedule[0]);
for (round = 1; round < this->k->rounds; round++)
{
l = _mm_aesenc_si128(l, this->k->schedule[round]);
}
l = _mm_aesenclast_si128(l, this->k->schedule[this->k->rounds]);
this->k1 = l;
bit_shift(chunk_from_thing(this->k1));
a = _mm_and_si128(l, msb);
if (memchr(&a, 0x80, 1))
{
this->k1 = _mm_xor_si128(this->k1, rb);
}
this->k2 = this->k1;
bit_shift(chunk_from_thing(this->k2));
a = _mm_and_si128(this->k1, msb);
if (memchr(&a, 0x80, 1))
{
this->k2 = _mm_xor_si128(this->k2, rb);
}
return TRUE;
}
METHOD(mac_t, destroy, void,
private_mac_t *this)
{
DESTROY_IF(this->k);
memwipe(&this->k1, sizeof(this->k1));
memwipe(&this->k2, sizeof(this->k2));
free_align(this);
}
/*
* Described in header
*/
mac_t *aesni_cmac_create(encryption_algorithm_t algo, size_t key_size)
{
private_mac_t *this;
INIT_ALIGN(this, sizeof(__m128i),
.public = {
.get_mac = _get_mac,
.get_mac_size = _get_mac_size,
.set_key = _set_key,
.destroy = _destroy,
},
);
return &this->public;
}
/*
* Described in header.
*/
prf_t *aesni_cmac_prf_create(pseudo_random_function_t algo)
{
mac_t *cmac;
switch (algo)
{
case PRF_AES128_CMAC:
cmac = aesni_cmac_create(ENCR_AES_CBC, 16);
break;
default:
return NULL;
}
if (cmac)
{
return mac_prf_create(cmac);
}
return NULL;
}
/*
* Described in header
*/
signer_t *aesni_cmac_signer_create(integrity_algorithm_t algo)
{
size_t truncation;
mac_t *cmac;
switch (algo)
{
case AUTH_AES_CMAC_96:
cmac = aesni_cmac_create(ENCR_AES_CBC, 16);
truncation = 12;
break;
default:
return NULL;
}
if (cmac)
{
return mac_signer_create(cmac, truncation);
}
return NULL;
}
|