1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
/*
* Copyright (C) 2008-2015 Martin Willi
* Copyright (C) 2012 Tobias Brunner
* HSR Hochschule fuer Technik Rapperswil
* Copyright (C) 2015 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "aesni_xcbc.h"
#include "aesni_key.h"
#include <crypto/prfs/mac_prf.h>
#include <crypto/signers/mac_signer.h>
typedef struct private_aesni_mac_t private_aesni_mac_t;
/**
* Private data of a mac_t object.
*/
struct private_aesni_mac_t {
/**
* Public mac_t interface.
*/
mac_t public;
/**
* Key schedule for K1
*/
aesni_key_t *k1;
/**
* k2
*/
__m128i k2;
/**
* k3
*/
__m128i k3;
/**
* E
*/
__m128i e;
/**
* remaining, unprocessed bytes in append mode
*/
u_char rem[AES_BLOCK_SIZE];
/**
* number of bytes used in remaining
*/
int rem_size;
/**
* TRUE if we have zero bytes to xcbc in final()
*/
bool zero;
};
METHOD(mac_t, get_mac, bool,
private_aesni_mac_t *this, chunk_t data, uint8_t *out)
{
__m128i *ks, e, *bi;
u_int blocks, rem, i;
if (!this->k1)
{
return FALSE;
}
ks = this->k1->schedule;
e = this->e;
if (data.len)
{
this->zero = FALSE;
}
if (this->rem_size + data.len > AES_BLOCK_SIZE)
{
/* (3) For each block M[i], where i = 1 ... n-1:
* XOR M[i] with E[i-1], then encrypt the result with Key K1,
* yielding E[i].
*/
/* append data to remaining bytes, process block M[1] */
memcpy(this->rem + this->rem_size, data.ptr,
AES_BLOCK_SIZE - this->rem_size);
data = chunk_skip(data, AES_BLOCK_SIZE - this->rem_size);
e = _mm_xor_si128(e, _mm_loadu_si128((__m128i*)this->rem));
e = _mm_xor_si128(e, ks[0]);
e = _mm_aesenc_si128(e, ks[1]);
e = _mm_aesenc_si128(e, ks[2]);
e = _mm_aesenc_si128(e, ks[3]);
e = _mm_aesenc_si128(e, ks[4]);
e = _mm_aesenc_si128(e, ks[5]);
e = _mm_aesenc_si128(e, ks[6]);
e = _mm_aesenc_si128(e, ks[7]);
e = _mm_aesenc_si128(e, ks[8]);
e = _mm_aesenc_si128(e, ks[9]);
e = _mm_aesenclast_si128(e, ks[10]);
bi = (__m128i*)data.ptr;
rem = data.len % AES_BLOCK_SIZE;
blocks = data.len / AES_BLOCK_SIZE;
if (!rem && blocks)
{ /* don't do last block */
rem = AES_BLOCK_SIZE;
blocks--;
}
/* process blocks M[2] ... M[n-1] */
for (i = 0; i < blocks; i++)
{
e = _mm_xor_si128(e, _mm_loadu_si128(bi + i));
e = _mm_xor_si128(e, ks[0]);
e = _mm_aesenc_si128(e, ks[1]);
e = _mm_aesenc_si128(e, ks[2]);
e = _mm_aesenc_si128(e, ks[3]);
e = _mm_aesenc_si128(e, ks[4]);
e = _mm_aesenc_si128(e, ks[5]);
e = _mm_aesenc_si128(e, ks[6]);
e = _mm_aesenc_si128(e, ks[7]);
e = _mm_aesenc_si128(e, ks[8]);
e = _mm_aesenc_si128(e, ks[9]);
e = _mm_aesenclast_si128(e, ks[10]);
}
/* store remaining bytes of block M[n] */
memcpy(this->rem, data.ptr + data.len - rem, rem);
this->rem_size = rem;
}
else
{
/* no complete block, just copy into remaining */
memcpy(this->rem + this->rem_size, data.ptr, data.len);
this->rem_size += data.len;
}
if (out)
{
/* (4) For block M[n]: */
if (this->rem_size == AES_BLOCK_SIZE && !this->zero)
{
/* a) If the blocksize of M[n] is 128 bits:
* XOR M[n] with E[n-1] and Key K2, then encrypt the result with
* Key K1, yielding E[n].
*/
e = _mm_xor_si128(e, this->k2);
}
else
{
/* b) If the blocksize of M[n] is less than 128 bits:
*
* i) Pad M[n] with a single "1" bit, followed by the number of
* "0" bits (possibly none) required to increase M[n]'s
* blocksize to 128 bits.
*/
if (this->rem_size < AES_BLOCK_SIZE)
{
memset(this->rem + this->rem_size, 0,
AES_BLOCK_SIZE - this->rem_size);
this->rem[this->rem_size] = 0x80;
}
/* ii) XOR M[n] with E[n-1] and Key K3, then encrypt the result
* with Key K1, yielding E[n].
*/
e = _mm_xor_si128(e, this->k3);
}
e = _mm_xor_si128(e, _mm_loadu_si128((__m128i*)this->rem));
e = _mm_xor_si128(e, ks[0]);
e = _mm_aesenc_si128(e, ks[1]);
e = _mm_aesenc_si128(e, ks[2]);
e = _mm_aesenc_si128(e, ks[3]);
e = _mm_aesenc_si128(e, ks[4]);
e = _mm_aesenc_si128(e, ks[5]);
e = _mm_aesenc_si128(e, ks[6]);
e = _mm_aesenc_si128(e, ks[7]);
e = _mm_aesenc_si128(e, ks[8]);
e = _mm_aesenc_si128(e, ks[9]);
e = _mm_aesenclast_si128(e, ks[10]);
_mm_storeu_si128((__m128i*)out, e);
/* (2) Define E[0] = 0x00000000000000000000000000000000 */
e = _mm_setzero_si128();
this->rem_size = 0;
this->zero = TRUE;
}
this->e = e;
return TRUE;
}
METHOD(mac_t, get_mac_size, size_t,
private_aesni_mac_t *this)
{
return AES_BLOCK_SIZE;
}
METHOD(mac_t, set_key, bool,
private_aesni_mac_t *this, chunk_t key)
{
__m128i t1, t2, t3;
u_char k1[AES_BLOCK_SIZE];
u_int round;
chunk_t k;
/* reset state */
this->e = _mm_setzero_si128();
this->rem_size = 0;
this->zero = TRUE;
/* Create RFC4434 variable keys if required */
if (key.len == AES_BLOCK_SIZE)
{
k = key;
}
else if (key.len < AES_BLOCK_SIZE)
{ /* pad short keys */
k = chunk_alloca(AES_BLOCK_SIZE);
memset(k.ptr, 0, k.len);
memcpy(k.ptr, key.ptr, key.len);
}
else
{ /* shorten key using XCBC */
k = chunk_alloca(AES_BLOCK_SIZE);
memset(k.ptr, 0, k.len);
if (!set_key(this, k) || !get_mac(this, key, k.ptr))
{
return FALSE;
}
}
/*
* (1) Derive 3 128-bit keys (K1, K2 and K3) from the 128-bit secret
* key K, as follows:
* K1 = 0x01010101010101010101010101010101 encrypted with Key K
* K2 = 0x02020202020202020202020202020202 encrypted with Key K
* K3 = 0x03030303030303030303030303030303 encrypted with Key K
*/
DESTROY_IF(this->k1);
this->k1 = aesni_key_create(TRUE, k);
if (!this->k1)
{
return FALSE;
}
t1 = _mm_set1_epi8(0x01);
t2 = _mm_set1_epi8(0x02);
t3 = _mm_set1_epi8(0x03);
t1 = _mm_xor_si128(t1, this->k1->schedule[0]);
t2 = _mm_xor_si128(t2, this->k1->schedule[0]);
t3 = _mm_xor_si128(t3, this->k1->schedule[0]);
for (round = 1; round < this->k1->rounds; round++)
{
t1 = _mm_aesenc_si128(t1, this->k1->schedule[round]);
t2 = _mm_aesenc_si128(t2, this->k1->schedule[round]);
t3 = _mm_aesenc_si128(t3, this->k1->schedule[round]);
}
t1 = _mm_aesenclast_si128(t1, this->k1->schedule[this->k1->rounds]);
t2 = _mm_aesenclast_si128(t2, this->k1->schedule[this->k1->rounds]);
t3 = _mm_aesenclast_si128(t3, this->k1->schedule[this->k1->rounds]);
_mm_storeu_si128((__m128i*)k1, t1);
this->k2 = t2;
this->k3 = t3;
this->k1->destroy(this->k1);
this->k1 = aesni_key_create(TRUE, chunk_from_thing(k1));
memwipe(k1, AES_BLOCK_SIZE);
return this->k1 != NULL;
}
METHOD(mac_t, destroy, void,
private_aesni_mac_t *this)
{
DESTROY_IF(this->k1);
memwipe(&this->k2, sizeof(this->k2));
memwipe(&this->k3, sizeof(this->k3));
free_align(this);
}
/*
* Described in header
*/
mac_t *aesni_xcbc_create(encryption_algorithm_t algo, size_t key_size)
{
private_aesni_mac_t *this;
INIT_ALIGN(this, sizeof(__m128i),
.public = {
.get_mac = _get_mac,
.get_mac_size = _get_mac_size,
.set_key = _set_key,
.destroy = _destroy,
},
);
return &this->public;
}
/*
* Described in header.
*/
prf_t *aesni_xcbc_prf_create(pseudo_random_function_t algo)
{
mac_t *xcbc;
switch (algo)
{
case PRF_AES128_XCBC:
xcbc = aesni_xcbc_create(ENCR_AES_CBC, 16);
break;
default:
return NULL;
}
if (xcbc)
{
return mac_prf_create(xcbc);
}
return NULL;
}
/*
* Described in header
*/
signer_t *aesni_xcbc_signer_create(integrity_algorithm_t algo)
{
size_t trunc;
mac_t *xcbc;
switch (algo)
{
case AUTH_AES_XCBC_96:
xcbc = aesni_xcbc_create(ENCR_AES_CBC, 16);
trunc = 12;
break;
default:
return NULL;
}
if (xcbc)
{
return mac_signer_create(xcbc, trunc);
}
return NULL;
}
|