1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/*
* Copyright (C) 2014 Andreas Steffen
* HSR Hochschule fuer Technik Rapperswil
*
* Copyright (C) 2009-2013 Security Innovation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "ntru_poly.h"
#include <crypto/mgf1/mgf1_bitspender.h>
#include <utils/debug.h>
#include <utils/test.h>
typedef struct private_ntru_poly_t private_ntru_poly_t;
typedef struct indices_len_t indices_len_t;
/**
* Stores number of +1 and -1 coefficients
*/
struct indices_len_t {
int p;
int m;
};
/**
* Private data of an ntru_poly_t object.
*/
struct private_ntru_poly_t {
/**
* Public ntru_poly_t interface.
*/
ntru_poly_t public;
/**
* Ring dimension equal to the number of polynomial coefficients
*/
uint16_t N;
/**
* Large modulus
*/
uint16_t q;
/**
* Array containing the indices of the non-zero coefficients
*/
uint16_t *indices;
/**
* Number of indices of the non-zero coefficients
*/
size_t num_indices;
/**
* Number of sparse polynomials
*/
int num_polynomials;
/**
* Number of nonzero coefficients for up to 3 sparse polynomials
*/
indices_len_t indices_len[3];
};
METHOD(ntru_poly_t, get_size, size_t,
private_ntru_poly_t *this)
{
return this->num_indices;
}
METHOD(ntru_poly_t, get_indices, uint16_t*,
private_ntru_poly_t *this)
{
return this->indices;
}
/**
* Multiplication of polynomial a with a sparse polynomial b given by
* the indices of its +1 and -1 coefficients results in polynomial c.
* This is a convolution operation
*/
static void ring_mult_i(uint16_t *a, indices_len_t len, uint16_t *indices,
uint16_t N, uint16_t mod_q_mask, uint16_t *t,
uint16_t *c)
{
int i, j, k;
/* initialize temporary array t */
for (k = 0; k < N; k++)
{
t[k] = 0;
}
/* t[(i+k)%N] = sum i=0 through N-1 of a[i], for b[k] = -1 */
for (j = len.p; j < len.p + len.m; j++)
{
k = indices[j];
for (i = 0; k < N; ++i, ++k)
{
t[k] += a[i];
}
for (k = 0; i < N; ++i, ++k)
{
t[k] += a[i];
}
}
/* t[(i+k)%N] = -(sum i=0 through N-1 of a[i] for b[k] = -1) */
for (k = 0; k < N; k++)
{
t[k] = -t[k];
}
/* t[(i+k)%N] += sum i=0 through N-1 of a[i] for b[k] = +1 */
for (j = 0; j < len.p; j++)
{
k = indices[j];
for (i = 0; k < N; ++i, ++k)
{
t[k] += a[i];
}
for (k = 0; i < N; ++i, ++k)
{
t[k] += a[i];
}
}
/* c = (a * b) mod q */
for (k = 0; k < N; k++)
{
c[k] = t[k] & mod_q_mask;
}
}
METHOD(ntru_poly_t, get_array, void,
private_ntru_poly_t *this, uint16_t *array)
{
uint16_t *t, *bi;
uint16_t mod_q_mask = this->q - 1;
indices_len_t len;
int i;
/* form polynomial F or F1 */
memset(array, 0x00, this->N * sizeof(uint16_t));
bi = this->indices;
len = this->indices_len[0];
for (i = 0; i < len.p + len.m; i++)
{
array[bi[i]] = (i < len.p) ? 1 : mod_q_mask;
}
if (this->num_polynomials == 3)
{
/* allocate temporary array t */
t = malloc(this->N * sizeof(uint16_t));
/* form F1 * F2 */
bi += len.p + len.m;
len = this->indices_len[1];
ring_mult_i(array, len, bi, this->N, mod_q_mask, t, array);
/* form (F1 * F2) + F3 */
bi += len.p + len.m;
len = this->indices_len[2];
for (i = 0; i < len.p + len.m; i++)
{
if (i < len.p)
{
array[bi[i]] += 1;
}
else
{
array[bi[i]] -= 1;
}
array[bi[i]] &= mod_q_mask;
}
free(t);
}
}
METHOD(ntru_poly_t, ring_mult, void,
private_ntru_poly_t *this, uint16_t *a, uint16_t *c)
{
uint16_t *t1, *t2;
uint16_t *bi = this->indices;
uint16_t mod_q_mask = this->q - 1;
int i;
/* allocate temporary array t1 */
t1 = malloc(this->N * sizeof(uint16_t));
if (this->num_polynomials == 1)
{
ring_mult_i(a, this->indices_len[0], bi, this->N, mod_q_mask, t1, c);
}
else
{
/* allocate temporary array t2 */
t2 = malloc(this->N * sizeof(uint16_t));
/* t1 = a * b1 */
ring_mult_i(a, this->indices_len[0], bi, this->N, mod_q_mask, t1, t1);
/* t1 = (a * b1) * b2 */
bi += this->indices_len[0].p + this->indices_len[0].m;
ring_mult_i(t1, this->indices_len[1], bi, this->N, mod_q_mask, t2, t1);
/* t2 = a * b3 */
bi += this->indices_len[1].p + this->indices_len[1].m;
ring_mult_i(a, this->indices_len[2], bi, this->N, mod_q_mask, t2, t2);
/* c = (a * b1 * b2) + (a * b3) */
for (i = 0; i < this->N; i++)
{
c[i] = (t1[i] + t2[i]) & mod_q_mask;
}
free(t2);
}
free(t1);
}
METHOD(ntru_poly_t, destroy, void,
private_ntru_poly_t *this)
{
memwipe(this->indices, sizeof(uint16_t) * get_size(this));
free(this->indices);
free(this);
}
/**
* Creates an empty ntru_poly_t object with space allocated for indices
*/
static private_ntru_poly_t* ntru_poly_create(uint16_t N, uint16_t q,
uint32_t indices_len_p,
uint32_t indices_len_m,
bool is_product_form)
{
private_ntru_poly_t *this;
int n;
INIT(this,
.public = {
.get_size = _get_size,
.get_indices = _get_indices,
.get_array = _get_array,
.ring_mult = _ring_mult,
.destroy = _destroy,
},
.N = N,
.q = q,
);
if (is_product_form)
{
this->num_polynomials = 3;
for (n = 0; n < 3; n++)
{
this->indices_len[n].p = 0xff & indices_len_p;
this->indices_len[n].m = 0xff & indices_len_m;
this->num_indices += this->indices_len[n].p +
this->indices_len[n].m;
indices_len_p >>= 8;
indices_len_m >>= 8;
}
}
else
{
this->num_polynomials = 1;
this->indices_len[0].p = indices_len_p;
this->indices_len[0].m = indices_len_m;
this->num_indices = indices_len_p + indices_len_m;
}
this->indices = malloc(sizeof(uint16_t) * this->num_indices);
return this;
}
/*
* Described in header.
*/
ntru_poly_t *ntru_poly_create_from_seed(hash_algorithm_t alg, chunk_t seed,
uint8_t c_bits, uint16_t N, uint16_t q,
uint32_t indices_len_p,
uint32_t indices_len_m,
bool is_product_form)
{
private_ntru_poly_t *this;
int n, num_indices, index_i = 0;
uint32_t index, limit;
uint8_t *used;
mgf1_bitspender_t *bitspender;
bitspender = mgf1_bitspender_create(alg, seed, TRUE);
if (!bitspender)
{
return NULL;
}
this = ntru_poly_create(N, q, indices_len_p, indices_len_m, is_product_form);
used = malloc(N);
limit = N * ((1 << c_bits) / N);
/* generate indices for all polynomials */
for (n = 0; n < this->num_polynomials; n++)
{
memset(used, 0, N);
num_indices = this->indices_len[n].p + this->indices_len[n].m;
/* generate indices for a single polynomial */
while (num_indices)
{
/* generate a random candidate index with a size of c_bits */
do
{
if (!bitspender->get_bits(bitspender, c_bits, &index))
{
bitspender->destroy(bitspender);
destroy(this);
free(used);
return NULL;
}
}
while (index >= limit);
/* form index and check if unique */
index %= N;
if (!used[index])
{
used[index] = 1;
this->indices[index_i++] = index;
num_indices--;
}
}
}
bitspender->destroy(bitspender);
free(used);
return &this->public;
}
/*
* Described in header.
*/
ntru_poly_t *ntru_poly_create_from_data(uint16_t *data, uint16_t N, uint16_t q,
uint32_t indices_len_p,
uint32_t indices_len_m,
bool is_product_form)
{
private_ntru_poly_t *this;
int i;
this = ntru_poly_create(N, q, indices_len_p, indices_len_m, is_product_form);
for (i = 0; i < this->num_indices; i++)
{
this->indices[i] = data[i];
}
return &this->public;
}
EXPORT_FUNCTION_FOR_TESTS(ntru, ntru_poly_create_from_seed);
EXPORT_FUNCTION_FOR_TESTS(ntru, ntru_poly_create_from_data);
|