1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
/*
* Copyright (C) 2014 Andreas Steffen
* HSR Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
/**
* @defgroup ntru_poly ntru_poly
* @{ @ingroup ntru_p
*/
#ifndef NTRU_POLY_H_
#define NTRU_POLY_H_
typedef struct ntru_poly_t ntru_poly_t;
#include <library.h>
/**
* Implements a trinary polynomial storing the indices of non-zero coefficients
*/
struct ntru_poly_t {
/**
* Get the size of the indices array
*
* @return number of indices
*/
size_t (*get_size)(ntru_poly_t *this);
/**
* @return array containing the indices of the non-zero coefficients
*/
uint16_t* (*get_indices)(ntru_poly_t *this);
/**
* @param array array containing all N coefficients of the polynomial
*/
void (*get_array)(ntru_poly_t *this, uint16_t *array);
/**
* Multiply polynomial a with ntru_poly_t object b having sparse coeffients
* to form result polynomial c = a * b
*
* @param a input polynomial a
* @param b output polynomial c
*/
void (*ring_mult)(ntru_poly_t *this, uint16_t *a, uint16_t *c);
/**
* Destroy ntru_poly_t object
*/
void (*destroy)(ntru_poly_t *this);
};
/**
* Create a trits polynomial from a seed using MGF1 with a base hash function
*
* @param alg hash algorithm to be used by MGF1
* @param seed seed used by MGF1 to generate trits from
* @param N ring dimension, number of polynomial coefficients
* @param q large modulus
* @param c_bits number of bits for candidate index
* @param indices_len_p number of indices for +1 coefficients
* @param indices_len_m number of indices for -1 coefficients
* @param is_product_form generate multiple polynomials
*/
ntru_poly_t *ntru_poly_create_from_seed(hash_algorithm_t alg, chunk_t seed,
uint8_t c_bits, uint16_t N, uint16_t q,
uint32_t indices_len_p,
uint32_t indices_len_m,
bool is_product_form);
/**
* Create a trits polynomial from an array of indices of non-zero coefficients
*
* @param data array of indices of non-zero coefficients
* @param N ring dimension, number of polynomial coefficients
* @param q large modulus
* @param indices_len_p number of indices for +1 coefficients
* @param indices_len_m number of indices for -1 coefficients
* @param is_product_form generate multiple polynomials
*/
ntru_poly_t *ntru_poly_create_from_data(uint16_t *data, uint16_t N, uint16_t q,
uint32_t indices_len_p,
uint32_t indices_len_m,
bool is_product_form);
#endif /** NTRU_POLY_H_ @}*/
|