1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
/*
* Copyright (C) 2008 Tobias Brunner
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "openssl_crypter.h"
#include <openssl/evp.h>
typedef struct private_openssl_crypter_t private_openssl_crypter_t;
/**
* Private data of openssl_crypter_t
*/
struct private_openssl_crypter_t {
/**
* Public part of this class.
*/
openssl_crypter_t public;
/*
* the key
*/
chunk_t key;
/*
* the cipher to use
*/
const EVP_CIPHER *cipher;
};
/**
* Look up an OpenSSL algorithm name and validate its key size
*/
static char* lookup_algorithm(u_int16_t ikev2_algo, size_t *key_size)
{
struct {
/* identifier specified in IKEv2 */
int ikev2_id;
/* name of the algorithm, as used in OpenSSL */
char *name;
/* default key size in bytes */
size_t key_def;
/* minimum key size */
size_t key_min;
/* maximum key size */
size_t key_max;
} mappings[] = {
{ENCR_DES, "des", 8, 8, 8},
{ENCR_3DES, "des3", 24, 24, 24},
{ENCR_RC5, "rc5", 16, 5, 255},
{ENCR_IDEA, "idea", 16, 16, 16},
{ENCR_CAST, "cast", 16, 5, 16},
{ENCR_BLOWFISH, "blowfish", 16, 5, 56},
};
int i;
for (i = 0; i < countof(mappings); i++)
{
if (ikev2_algo == mappings[i].ikev2_id)
{
/* set the key size if it is not set */
if (*key_size == 0)
{
*key_size = mappings[i].key_def;
}
/* validate key size */
if (*key_size < mappings[i].key_min ||
*key_size > mappings[i].key_max)
{
return NULL;
}
return mappings[i].name;
}
}
return NULL;
}
/**
* Do the actual en/decryption in an EVP context
*/
static bool crypt(private_openssl_crypter_t *this, chunk_t data, chunk_t iv,
chunk_t *dst, int enc)
{
int len;
u_char *out;
out = data.ptr;
if (dst)
{
*dst = chunk_alloc(data.len);
out = dst->ptr;
}
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
return EVP_CipherInit_ex(&ctx, this->cipher, NULL, NULL, NULL, enc) &&
EVP_CIPHER_CTX_set_padding(&ctx, 0) /* disable padding */ &&
EVP_CIPHER_CTX_set_key_length(&ctx, this->key.len) &&
EVP_CipherInit_ex(&ctx, NULL, NULL, this->key.ptr, iv.ptr, enc) &&
EVP_CipherUpdate(&ctx, out, &len, data.ptr, data.len) &&
/* since padding is disabled this does nothing */
EVP_CipherFinal_ex(&ctx, out + len, &len) &&
EVP_CIPHER_CTX_cleanup(&ctx);
}
METHOD(crypter_t, decrypt, bool,
private_openssl_crypter_t *this, chunk_t data, chunk_t iv, chunk_t *dst)
{
return crypt(this, data, iv, dst, 0);
}
METHOD(crypter_t, encrypt, bool,
private_openssl_crypter_t *this, chunk_t data, chunk_t iv, chunk_t *dst)
{
return crypt(this, data, iv, dst, 1);
}
METHOD(crypter_t, get_block_size, size_t,
private_openssl_crypter_t *this)
{
return this->cipher->block_size;
}
METHOD(crypter_t, get_iv_size, size_t,
private_openssl_crypter_t *this)
{
return this->cipher->iv_len;
}
METHOD(crypter_t, get_key_size, size_t,
private_openssl_crypter_t *this)
{
return this->key.len;
}
METHOD(crypter_t, set_key, bool,
private_openssl_crypter_t *this, chunk_t key)
{
memcpy(this->key.ptr, key.ptr, min(key.len, this->key.len));
return TRUE;
}
METHOD(crypter_t, destroy, void,
private_openssl_crypter_t *this)
{
chunk_clear(&this->key);
free(this);
}
/*
* Described in header
*/
openssl_crypter_t *openssl_crypter_create(encryption_algorithm_t algo,
size_t key_size)
{
private_openssl_crypter_t *this;
INIT(this,
.public = {
.crypter = {
.encrypt = _encrypt,
.decrypt = _decrypt,
.get_block_size = _get_block_size,
.get_iv_size = _get_iv_size,
.get_key_size = _get_key_size,
.set_key = _set_key,
.destroy = _destroy,
},
},
);
switch (algo)
{
case ENCR_NULL:
this->cipher = EVP_enc_null();
key_size = 0;
break;
case ENCR_AES_CBC:
switch (key_size)
{
case 0:
key_size = 16;
/* FALL */
case 16: /* AES 128 */
this->cipher = EVP_get_cipherbyname("aes128");
break;
case 24: /* AES-192 */
this->cipher = EVP_get_cipherbyname("aes192");
break;
case 32: /* AES-256 */
this->cipher = EVP_get_cipherbyname("aes256");
break;
default:
free(this);
return NULL;
}
break;
case ENCR_CAMELLIA_CBC:
switch (key_size)
{
case 0:
key_size = 16;
/* FALL */
case 16: /* CAMELLIA 128 */
this->cipher = EVP_get_cipherbyname("camellia128");
break;
case 24: /* CAMELLIA 192 */
this->cipher = EVP_get_cipherbyname("camellia192");
break;
case 32: /* CAMELLIA 256 */
this->cipher = EVP_get_cipherbyname("camellia256");
break;
default:
free(this);
return NULL;
}
break;
#ifndef OPENSSL_NO_DES
case ENCR_DES_ECB:
key_size = 8;
this->cipher = EVP_des_ecb();
break;
#endif
default:
{
char* name;
name = lookup_algorithm(algo, &key_size);
if (!name)
{
/* algo unavailable or key_size invalid */
free(this);
return NULL;
}
this->cipher = EVP_get_cipherbyname(name);
break;
}
}
if (!this->cipher)
{
/* OpenSSL does not support the requested algo */
free(this);
return NULL;
}
this->key = chunk_alloc(key_size);
return &this->public;
}
|