summaryrefslogtreecommitdiff
path: root/src/libstrongswan/plugins/pkcs8/pkcs8_builder.c
blob: a501423b17b02e413786dd392b1260e41fa3316d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*
 * Copyright (C) 2012 Tobias Brunner
 * Hochschule fuer Technik Rapperswil
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <http://www.fsf.org/copyleft/gpl.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 */

#include "pkcs8_builder.h"

#include <debug.h>
#include <asn1/oid.h>
#include <asn1/asn1.h>
#include <asn1/asn1_parser.h>
#include <credentials/keys/private_key.h>

/**
 * ASN.1 definition of a privateKeyInfo structure
 */
static const asn1Object_t pkinfoObjects[] = {
	{ 0, "privateKeyInfo",			ASN1_SEQUENCE,		ASN1_NONE	}, /* 0 */
	{ 1,   "version",				ASN1_INTEGER,		ASN1_BODY	}, /* 1 */
	{ 1,   "privateKeyAlgorithm",	ASN1_EOC,			ASN1_RAW	}, /* 2 */
	{ 1,   "privateKey",			ASN1_OCTET_STRING,	ASN1_BODY	}, /* 3 */
	{ 1,   "attributes",			ASN1_CONTEXT_C_0,	ASN1_OPT	}, /* 4 */
	{ 1,   "end opt",				ASN1_EOC,			ASN1_END	}, /* 5 */
	{ 0, "exit",					ASN1_EOC,			ASN1_EXIT	}
};
#define PKINFO_PRIVATE_KEY_ALGORITHM	2
#define PKINFO_PRIVATE_KEY				3

/**
 * Load a generic private key from an ASN.1 encoded blob
 */
static private_key_t *parse_private_key(chunk_t blob)
{
	asn1_parser_t *parser;
	chunk_t object, params = chunk_empty;
	int objectID;
	private_key_t *key = NULL;
	key_type_t type = KEY_ANY;

	parser = asn1_parser_create(pkinfoObjects, blob);
	parser->set_flags(parser, FALSE, TRUE);

	while (parser->iterate(parser, &objectID, &object))
	{
		switch (objectID)
		{
			case PKINFO_PRIVATE_KEY_ALGORITHM:
			{
				int oid = asn1_parse_algorithmIdentifier(object,
									parser->get_level(parser) + 1, &params);

				switch (oid)
				{
					case OID_RSA_ENCRYPTION:
						type = KEY_RSA;
						break;
					case OID_EC_PUBLICKEY:
						type = KEY_ECDSA;
						break;
					default:
						/* key type not supported */
						goto end;
				}
				break;
			}
			case PKINFO_PRIVATE_KEY:
			{
				DBG2(DBG_ASN, "-- > --");
				if (params.ptr)
				{
					key = lib->creds->create(lib->creds, CRED_PRIVATE_KEY,
											 type, BUILD_BLOB_ALGID_PARAMS,
											 params, BUILD_BLOB_ASN1_DER,
											 object, BUILD_END);
				}
				else
				{
					key = lib->creds->create(lib->creds, CRED_PRIVATE_KEY,
											 type, BUILD_BLOB_ASN1_DER, object,
											 BUILD_END);
				}
				DBG2(DBG_ASN, "-- < --");
				break;
			}
		}
	}

end:
	parser->destroy(parser);
	return key;
}

/**
 * Verify padding of decrypted blob.
 * Length of blob is adjusted accordingly.
 */
static bool verify_padding(chunk_t *blob)
{
	u_int8_t padding, count;

	padding = count = blob->ptr[blob->len - 1];
	if (padding > 8)
	{
		return FALSE;
	}
	for (; blob->len && count; --blob->len, --count)
	{
		if (blob->ptr[blob->len - 1] != padding)
		{
			return FALSE;
		}
	}
	return TRUE;
}

/**
 * Prototype for key derivation functions.
 */
typedef bool (*kdf_t)(void *generator, chunk_t password, chunk_t salt,
					  u_int64_t iterations, chunk_t key);

/**
 * Try to decrypt the given blob with multiple passwords using the given
 * key derivation function. keymat is where the kdf function writes the key
 * to, key and iv point to the actual keys and initialization vectors resp.
 */
static private_key_t *decrypt_private_key(chunk_t blob,
					encryption_algorithm_t encr, size_t key_len, kdf_t kdf,
					void *generator, chunk_t salt, u_int64_t iterations,
					chunk_t keymat, chunk_t key, chunk_t iv)
{
	enumerator_t *enumerator;
	shared_key_t *shared;
	crypter_t *crypter;
	private_key_t *private_key = NULL;

	crypter = lib->crypto->create_crypter(lib->crypto, encr, key_len);
	if (!crypter)
	{
		DBG1(DBG_ASN, "  %N encryption algorithm not available",
			 encryption_algorithm_names, encr);
		return NULL;
	}
	if (blob.len % crypter->get_block_size(crypter))
	{
		DBG1(DBG_ASN, "  data size is not a multiple of block size");
		crypter->destroy(crypter);
		return NULL;
	}

	enumerator = lib->credmgr->create_shared_enumerator(lib->credmgr,
										SHARED_PRIVATE_KEY_PASS, NULL, NULL);
	while (enumerator->enumerate(enumerator, &shared, NULL, NULL))
	{
		chunk_t decrypted;

		if (!kdf(generator, shared->get_key(shared), salt, iterations, keymat))
		{
			continue;
		}
		if (!crypter->set_key(crypter, key) ||
			!crypter->decrypt(crypter, blob, iv, &decrypted))
		{
			continue;
		}
		if (verify_padding(&decrypted))
		{
			private_key = parse_private_key(decrypted);
			if (private_key)
			{
				chunk_clear(&decrypted);
				break;
			}
		}
		chunk_free(&decrypted);
	}
	enumerator->destroy(enumerator);
	crypter->destroy(crypter);

	return private_key;
}

/**
 * Function F of PBKDF2
 */
static bool pbkdf2_f(chunk_t block, prf_t *prf, chunk_t seed,
					 u_int64_t iterations)
{
	chunk_t u;
	u_int64_t i;

	u = chunk_alloca(prf->get_block_size(prf));
	if (!prf->get_bytes(prf, seed, u.ptr))
	{
		return FALSE;
	}
	memcpy(block.ptr, u.ptr, block.len);

	for (i = 1; i < iterations; i++)
	{
		if (!prf->get_bytes(prf, u, u.ptr))
		{
			return FALSE;
		}
		memxor(block.ptr, u.ptr, block.len);
	}
	return TRUE;
}

/**
 * PBKDF2 key derivation function
 */
static bool pbkdf2(prf_t *prf, chunk_t password, chunk_t salt,
				   u_int64_t iterations, chunk_t key)
{
	chunk_t keymat, block, seed;
	size_t blocks;
	u_int32_t i = 0, *ni;

	if (!prf->set_key(prf, password))
	{
		return FALSE;
	}

	block.len = prf->get_block_size(prf);
	blocks = (key.len - 1) / block.len + 1;
	keymat = chunk_alloca(blocks * block.len);

	seed = chunk_cata("cc", salt, chunk_from_thing(i));
	ni = (u_int32_t*)(seed.ptr + salt.len);

	for (; i < blocks; i++)
	{
		*ni = htonl(i + 1);
		block.ptr = keymat.ptr + (i * block.len);
		if (!pbkdf2_f(block, prf, seed, iterations))
		{
			return FALSE;
		}
	}

	memcpy(key.ptr, keymat.ptr, key.len);

	return TRUE;
}

/**
 * Decrypt an encrypted PKCS#8 encoded private key according to PBES2
 */
static private_key_t *decrypt_private_key_pbes2(chunk_t blob,
							encryption_algorithm_t encr, size_t key_len,
							chunk_t iv, pseudo_random_function_t prf_func,
							chunk_t salt, u_int64_t iterations)
{
	private_key_t *private_key;
	prf_t *prf;
	chunk_t key;

	prf = lib->crypto->create_prf(lib->crypto, prf_func);
	if (!prf)
	{
		DBG1(DBG_ASN, "  %N prf algorithm not available",
			 pseudo_random_function_names, prf_func);
		return NULL;
	}

	key = chunk_alloca(key_len);

	private_key = decrypt_private_key(blob, encr, key_len, (kdf_t)pbkdf2, prf,
									  salt, iterations, key, key, iv);

	prf->destroy(prf);
	return private_key;
}

/**
 * PBKDF1 key derivation function
 */
static bool pbkdf1(hasher_t *hasher, chunk_t password, chunk_t salt,
				   u_int64_t iterations, chunk_t key)
{
	chunk_t hash;
	u_int64_t i;

	hash = chunk_alloca(hasher->get_hash_size(hasher));
	if (!hasher->get_hash(hasher, password, NULL) ||
		!hasher->get_hash(hasher, salt, hash.ptr))
	{
		return FALSE;
	}

	for (i = 1; i < iterations; i++)
	{
		if (!hasher->get_hash(hasher, hash, hash.ptr))
		{
			return FALSE;
		}
	}

	memcpy(key.ptr, hash.ptr, key.len);

	return TRUE;
}

/**
 * Decrypt an encrypted PKCS#8 encoded private key according to PBES1
 */
static private_key_t *decrypt_private_key_pbes1(chunk_t blob,
							encryption_algorithm_t encr, size_t key_len,
							hash_algorithm_t hash, chunk_t salt,
							u_int64_t iterations)
{
	private_key_t *private_key = NULL;
	hasher_t *hasher = NULL;
	chunk_t keymat, key, iv;

	hasher = lib->crypto->create_hasher(lib->crypto, hash);
	if (!hasher)
	{
		DBG1(DBG_ASN, "  %N hash algorithm not available",
			 hash_algorithm_names, hash);
		goto end;
	}
	if (hasher->get_hash_size(hasher) < key_len)
	{
		goto end;
	}

	keymat = chunk_alloca(key_len * 2);
	key.len = key_len;
	key.ptr = keymat.ptr;
	iv.len = key_len;
	iv.ptr = keymat.ptr + key_len;

	private_key = decrypt_private_key(blob, encr, key_len, (kdf_t)pbkdf1,
									  hasher, salt, iterations, keymat,
									  key, iv);

end:
	DESTROY_IF(hasher);
	return private_key;
}

/**
 * Parse an ASN1_INTEGER to a u_int64_t.
 */
static u_int64_t parse_asn1_integer_uint64(chunk_t blob)
{
	u_int64_t val = 0;
	int i;

	for (i = 0; i < blob.len; i++)
	{	/* if it is longer than 8 bytes, we just use the 8 LSBs */
		val <<= 8;
		val |= (u_int64_t)blob.ptr[i];
	}
	return val;
}

/**
 * ASN.1 definition of a PBKDF2-params structure
 * The salt is actually a CHOICE and could be an AlgorithmIdentifier from
 * PBKDF2-SaltSources (but as per RFC 2898 that's for future versions).
 */
static const asn1Object_t pbkdf2ParamsObjects[] = {
	{ 0, "PBKDF2-params",	ASN1_SEQUENCE,		ASN1_NONE			}, /* 0 */
	{ 1,   "salt",			ASN1_OCTET_STRING,	ASN1_BODY			}, /* 1 */
	{ 1,   "iterationCount",ASN1_INTEGER,		ASN1_BODY			}, /* 2 */
	{ 1,   "keyLength",		ASN1_INTEGER,		ASN1_OPT|ASN1_BODY	}, /* 3 */
	{ 1,   "end opt",		ASN1_EOC,			ASN1_END			}, /* 4 */
	{ 1,   "prf",			ASN1_EOC,			ASN1_DEF|ASN1_RAW	}, /* 5 */
	{ 0, "exit",			ASN1_EOC,			ASN1_EXIT			}
};
#define PBKDF2_SALT					1
#define PBKDF2_ITERATION_COUNT		2
#define PBKDF2_KEY_LENGTH			3
#define PBKDF2_PRF					5

/**
 * Parse a PBKDF2-params structure
 */
static void parse_pbkdf2_params(chunk_t blob, chunk_t *salt,
								u_int64_t *iterations, size_t *key_len,
								pseudo_random_function_t *prf)
{
	asn1_parser_t *parser;
	chunk_t object;
	int objectID;

	parser = asn1_parser_create(pbkdf2ParamsObjects, blob);

	*key_len = 0; /* key_len is optional */

	while (parser->iterate(parser, &objectID, &object))
	{
		switch (objectID)
		{
			case PBKDF2_SALT:
			{
				*salt = object;
				break;
			}
			case PBKDF2_ITERATION_COUNT:
			{
				*iterations = parse_asn1_integer_uint64(object);
				break;
			}
			case PBKDF2_KEY_LENGTH:
			{
				*key_len = (size_t)parse_asn1_integer_uint64(object);
				break;
			}
			case PBKDF2_PRF:
			{	/* defaults to id-hmacWithSHA1 */
				*prf = PRF_HMAC_SHA1;
				break;
			}
		}
	}

	parser->destroy(parser);
}

/**
 * ASN.1 definition of a PBES2-params structure
 */
static const asn1Object_t pbes2ParamsObjects[] = {
	{ 0, "PBES2-params",		ASN1_SEQUENCE,		ASN1_NONE	}, /* 0 */
	{ 1,   "keyDerivationFunc",	ASN1_EOC,			ASN1_RAW	}, /* 1 */
	{ 1,   "encryptionScheme",	ASN1_EOC,			ASN1_RAW	}, /* 2 */
	{ 0, "exit",				ASN1_EOC,			ASN1_EXIT	}
};
#define PBES2PARAMS_KEY_DERIVATION_FUNC		1
#define PBES2PARAMS_ENCRYPTION_SCHEME		2

/**
 * Parse a PBES2-params structure
 */
static void parse_pbes2_params(chunk_t blob, chunk_t *salt,
							   u_int64_t *iterations, size_t *key_len,
							   pseudo_random_function_t *prf,
							   encryption_algorithm_t *encr, chunk_t *iv)
{
	asn1_parser_t *parser;
	chunk_t object, params;
	int objectID;

	parser = asn1_parser_create(pbes2ParamsObjects, blob);

	while (parser->iterate(parser, &objectID, &object))
	{
		switch (objectID)
		{
			case PBES2PARAMS_KEY_DERIVATION_FUNC:
			{
				int oid = asn1_parse_algorithmIdentifier(object,
									parser->get_level(parser) + 1, &params);
				if (oid != OID_PBKDF2)
				{	/* unsupported key derivation function */
					goto end;
				}
				parse_pbkdf2_params(params, salt, iterations, key_len, prf);
				break;
			}
			case PBES2PARAMS_ENCRYPTION_SCHEME:
			{
				int oid = asn1_parse_algorithmIdentifier(object,
									parser->get_level(parser) + 1, &params);
				if (oid != OID_3DES_EDE_CBC)
				{	/* unsupported encryption scheme */
					goto end;
				}
				if (*key_len <= 0)
				{	/* default key len for DES-EDE3-CBC-Pad */
					*key_len = 24;
				}
				if (!asn1_parse_simple_object(&params, ASN1_OCTET_STRING,
									parser->get_level(parser) + 1, "IV"))
				{
					goto end;
				}
				*encr = ENCR_3DES;
				*iv = params;
				break;
			}
		}
	}

end:
	parser->destroy(parser);
}

/**
 * ASN.1 definition of a PBEParameter structure
 */
static const asn1Object_t pbeParameterObjects[] = {
	{ 0, "PBEParameter",		ASN1_SEQUENCE,		ASN1_NONE	}, /* 0 */
	{ 1,   "salt",				ASN1_OCTET_STRING,	ASN1_BODY	}, /* 1 */
	{ 1,   "iterationCount",	ASN1_INTEGER,		ASN1_BODY	}, /* 2 */
	{ 0, "exit",				ASN1_EOC,			ASN1_EXIT	}
};
#define PBEPARAM_SALT					1
#define PBEPARAM_ITERATION_COUNT		2

/**
 * Parse a PBEParameter structure
 */
static void parse_pbe_parameters(chunk_t blob, chunk_t *salt,
								 u_int64_t *iterations)
{
	asn1_parser_t *parser;
	chunk_t object;
	int objectID;

	parser = asn1_parser_create(pbeParameterObjects, blob);

	while (parser->iterate(parser, &objectID, &object))
	{
		switch (objectID)
		{
			case PBEPARAM_SALT:
			{
				*salt = object;
				break;
			}
			case PBEPARAM_ITERATION_COUNT:
			{
				*iterations = parse_asn1_integer_uint64(object);
				break;
			}
		}
	}

	parser->destroy(parser);
}

/**
 * ASN.1 definition of an encryptedPrivateKeyInfo structure
 */
static const asn1Object_t encryptedPKIObjects[] = {
	{ 0, "encryptedPrivateKeyInfo",	ASN1_SEQUENCE,		ASN1_NONE	}, /* 0 */
	{ 1,   "encryptionAlgorithm",	ASN1_EOC,			ASN1_RAW	}, /* 1 */
	{ 1,   "encryptedData",			ASN1_OCTET_STRING,	ASN1_BODY	}, /* 2 */
	{ 0, "exit",					ASN1_EOC,			ASN1_EXIT	}
};
#define EPKINFO_ENCRYPTION_ALGORITHM	1
#define EPKINFO_ENCRYPTED_DATA			2

/**
 * Load an encrypted private key from an ASN.1 encoded blob
 * Schemes per PKCS#5 (RFC 2898)
 */
static private_key_t *parse_encrypted_private_key(chunk_t blob)
{
	asn1_parser_t *parser;
	chunk_t object, params, salt = chunk_empty, iv = chunk_empty;
	u_int64_t iterations = 0;
	int objectID;
	encryption_algorithm_t encr = ENCR_UNDEFINED;
	hash_algorithm_t hash = HASH_UNKNOWN;
	pseudo_random_function_t prf = PRF_UNDEFINED;
	private_key_t *key = NULL;
	size_t key_len = 8;

	parser = asn1_parser_create(encryptedPKIObjects, blob);

	while (parser->iterate(parser, &objectID, &object))
	{
		switch (objectID)
		{
			case EPKINFO_ENCRYPTION_ALGORITHM:
			{
				int oid = asn1_parse_algorithmIdentifier(object,
									parser->get_level(parser) + 1, &params);

				switch (oid)
				{
					case OID_PBE_MD5_DES_CBC:
						encr = ENCR_DES;
						hash = HASH_MD5;
						parse_pbe_parameters(params, &salt, &iterations);
						break;
					case OID_PBE_SHA1_DES_CBC:
						encr = ENCR_DES;
						hash = HASH_SHA1;
						parse_pbe_parameters(params, &salt, &iterations);
						break;
					case OID_PBES2:
						parse_pbes2_params(params, &salt, &iterations,
										   &key_len, &prf, &encr, &iv);
						break;
					default:
						/* encryption scheme not supported */
						goto end;
				}
				break;
			}
			case EPKINFO_ENCRYPTED_DATA:
			{
				if (prf != PRF_UNDEFINED)
				{
					key = decrypt_private_key_pbes2(object, encr, key_len, iv,
													prf, salt, iterations);
				}
				else
				{
					key = decrypt_private_key_pbes1(object, encr, key_len, hash,
													salt, iterations);
				}
				break;
			}
		}
	}

end:
	parser->destroy(parser);
	return key;
}

/**
 * See header.
 */
private_key_t *pkcs8_private_key_load(key_type_t type, va_list args)
{
	chunk_t blob = chunk_empty;
	private_key_t *key;

	while (TRUE)
	{
		switch (va_arg(args, builder_part_t))
		{
			case BUILD_BLOB_ASN1_DER:
				blob = va_arg(args, chunk_t);
				continue;
			case BUILD_END:
				break;
			default:
				return NULL;
		}
		break;
	}
	/* we don't know whether it is encrypted or not, try both ways */
	key = parse_encrypted_private_key(blob);
	if (!key)
	{
		key = parse_private_key(blob);
	}
	return key;
}