1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
/*
* Copyright (C) 2015-2016 Andreas Steffen
* HSR Hochschule fuer Technik Rapperswil
*
* Based on the implementation by the Keccak, Keyak and Ketje Teams, namely,
* Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche and
* Ronny Van Keer, hereby denoted as "the implementer".
*
* To the extent possible under law, the implementer has waived all copyright
* and related or neighboring rights to the source code in this file.
* http://creativecommons.org/publicdomain/zero/1.0/
*/
#include <string.h>
#include "sha3_keccak.h"
typedef struct private_sha3_keccak_t private_sha3_keccak_t;
#define KECCAK_STATE_SIZE 200 /* bytes */
#define KECCAK_MAX_RATE 168 /* bytes */
static const uint64_t round_constants[] = {
0x0000000000000001ULL,
0x0000000000008082ULL,
0x800000000000808aULL,
0x8000000080008000ULL,
0x000000000000808bULL,
0x0000000080000001ULL,
0x8000000080008081ULL,
0x8000000000008009ULL,
0x000000000000008aULL,
0x0000000000000088ULL,
0x0000000080008009ULL,
0x000000008000000aULL,
0x000000008000808bULL,
0x800000000000008bULL,
0x8000000000008089ULL,
0x8000000000008003ULL,
0x8000000000008002ULL,
0x8000000000000080ULL,
0x000000000000800aULL,
0x800000008000000aULL,
0x8000000080008081ULL,
0x8000000000008080ULL,
0x0000000080000001ULL,
0x8000000080008008ULL
};
/**
* Private data structure with hashing context for SHA-3
*/
struct private_sha3_keccak_t {
/**
* Public interface for this hasher.
*/
sha3_keccak_t public;
/**
* Internal state of 1600 bits as defined by FIPS-202
*/
uint8_t state[KECCAK_STATE_SIZE];
/**
* Rate in bytes
*/
u_int rate;
/**
* Rate input buffer
*/
uint8_t rate_buffer[KECCAK_MAX_RATE];
/**
* Index pointing to the current position in the rate buffer
*/
u_int rate_index;
/**
* Suffix delimiting the input message
*/
uint8_t delimited_suffix;
};
#if BYTE_ORDER != LITTLE_ENDIAN
/**
* Function to load a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static uint64_t load64(const uint8_t *x)
{
int i;
uint64_t u = 0;
for (i = 7; i >= 0; --i)
{
u <<= 8;
u |= x[i];
}
return u;
}
/**
* Function to store a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static void store64(uint8_t *x, uint64_t u)
{
u_int i;
for (i = 0; i < 8; ++i)
{
x[i] = u;
u >>= 8;
}
}
/**
* Function to XOR into a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static void xor64(uint8_t *x, uint64_t u)
{
u_int i;
for (i = 0; i < 8; ++i)
{
x[i] ^= u;
u >>= 8;
}
}
#endif
/**
* Some macros used by the Keccak-f[1600] permutation.
*/
#define ROL64(a, offset) ((((uint64_t)a) << offset) ^ (((uint64_t)a) >> (64-offset)))
#if BYTE_ORDER == LITTLE_ENDIAN
#define readLane(i) (((uint64_t*)state)[i])
#define writeLane(i, lane) (((uint64_t*)state)[i]) = (lane)
#define XORLane(i, lane) (((uint64_t*)state)[i]) ^= (lane)
#elif BYTE_ORDER == BIG_ENDIAN
#define readLane(i) load64((uint8_t*)state+sizeof(uint64_t)*i))
#define writeLane(i, lane) store64((uint8_t*)state+sizeof(uint64_t)*i, lane)
#define XORLane(i, lane) xor64((uint8_t*)state+sizeof(uint64_t)*i, lane)
#endif
/**
* Function that computes the Keccak-f[1600] permutation on the given state.
*/
static void keccak_f1600_state_permute(void *state)
{
int round;
for (round = 0; round < 24; round++)
{
{ /* θ step (see [Keccak Reference, Section 2.3.2]) */
uint64_t C[5], D;
/* Compute the parity of the columns */
C[0] = readLane(0) ^ readLane( 5) ^ readLane(10)
^ readLane(15) ^ readLane(20);
C[1] = readLane(1) ^ readLane( 6) ^ readLane(11)
^ readLane(16) ^ readLane(21);
C[2] = readLane(2) ^ readLane( 7) ^ readLane(12)
^ readLane(17) ^ readLane(22);
C[3] = readLane(3) ^ readLane( 8) ^ readLane(13)
^ readLane(18) ^ readLane(23);
C[4] = readLane(4) ^ readLane( 9) ^ readLane(14)
^ readLane(19) ^ readLane(24);
/* Compute and add the θ effect to the whole column */
D = C[4] ^ ROL64(C[1], 1);
XORLane( 0, D);
XORLane( 5, D);
XORLane(10, D);
XORLane(15, D);
XORLane(20, D);
D = C[0] ^ ROL64(C[2], 1);
XORLane( 1, D);
XORLane( 6, D);
XORLane(11, D);
XORLane(16, D);
XORLane(21, D);
D = C[1] ^ ROL64(C[3], 1);
XORLane( 2, D);
XORLane( 7, D);
XORLane(12, D);
XORLane(17, D);
XORLane(22, D);
D = C[2] ^ ROL64(C[4], 1);
XORLane( 3, D);
XORLane( 8, D);
XORLane(13, D);
XORLane(18, D);
XORLane(23, D);
D = C[3] ^ ROL64(C[0], 1);
XORLane( 4, D);
XORLane( 9, D);
XORLane(14, D);
XORLane(19, D);
XORLane(24, D);
}
{ /* ρ and π steps (see [Keccak Reference, Sections 2.3.3 and 2.3.4]) */
uint64_t t1, t2;
t1 = readLane( 1);
t2 = readLane(10);
writeLane(10, ROL64(t1, 1));
t1 = readLane( 7);
writeLane( 7, ROL64(t2, 3));
t2 = readLane(11);
writeLane(11, ROL64(t1, 6));
t1 = readLane(17);
writeLane(17, ROL64(t2, 10));
t2 = readLane(18);
writeLane(18, ROL64(t1, 15));
t1 = readLane( 3);
writeLane( 3, ROL64(t2, 21));
t2 = readLane( 5);
writeLane( 5, ROL64(t1, 28));
t1 = readLane(16);
writeLane(16, ROL64(t2, 36));
t2 = readLane( 8);
writeLane( 8, ROL64(t1, 45));
t1 = readLane(21);
writeLane(21, ROL64(t2, 55));
t2 = readLane(24);
writeLane(24, ROL64(t1, 2));
t1 = readLane( 4);
writeLane( 4, ROL64(t2, 14));
t2 = readLane(15);
writeLane(15, ROL64(t1, 27));
t1 = readLane(23);
writeLane(23, ROL64(t2, 41));
t2 = readLane(19);
writeLane(19, ROL64(t1, 56));
t1 = readLane(13);
writeLane(13, ROL64(t2, 8));
t2 = readLane(12);
writeLane(12, ROL64(t1, 25));
t1 = readLane( 2);
writeLane( 2, ROL64(t2, 43));
t2 = readLane(20);
writeLane(20, ROL64(t1, 62));
t1 = readLane(14);
writeLane(14, ROL64(t2, 18));
t2 = readLane(22);
writeLane(22, ROL64(t1, 39));
t1 = readLane( 9);
writeLane( 9, ROL64(t2, 61));
t2 = readLane( 6);
writeLane( 6, ROL64(t1, 20));
writeLane( 1, ROL64(t2, 44));
}
{ /* χ step (see [Keccak Reference, Section 2.3.1]) */
uint64_t t[5];
t[0] = readLane(0);
t[1] = readLane(1);
t[2] = readLane(2);
t[3] = readLane(3);
t[4] = readLane(4);
writeLane(0, t[0] ^ ((~t[1]) & t[2]));
writeLane(1, t[1] ^ ((~t[2]) & t[3]));
writeLane(2, t[2] ^ ((~t[3]) & t[4]));
writeLane(3, t[3] ^ ((~t[4]) & t[0]));
writeLane(4, t[4] ^ ((~t[0]) & t[1]));
t[0] = readLane(5);
t[1] = readLane(6);
t[2] = readLane(7);
t[3] = readLane(8);
t[4] = readLane(9);
writeLane(5, t[0] ^ ((~t[1]) & t[2]));
writeLane(6, t[1] ^ ((~t[2]) & t[3]));
writeLane(7, t[2] ^ ((~t[3]) & t[4]));
writeLane(8, t[3] ^ ((~t[4]) & t[0]));
writeLane(9, t[4] ^ ((~t[0]) & t[1]));
t[0] = readLane(10);
t[1] = readLane(11);
t[2] = readLane(12);
t[3] = readLane(13);
t[4] = readLane(14);
writeLane(10, t[0] ^ ((~t[1]) & t[2]));
writeLane(11, t[1] ^ ((~t[2]) & t[3]));
writeLane(12, t[2] ^ ((~t[3]) & t[4]));
writeLane(13, t[3] ^ ((~t[4]) & t[0]));
writeLane(14, t[4] ^ ((~t[0]) & t[1]));
t[0] = readLane(15);
t[1] = readLane(16);
t[2] = readLane(17);
t[3] = readLane(18);
t[4] = readLane(19);
writeLane(15, t[0] ^ ((~t[1]) & t[2]));
writeLane(16, t[1] ^ ((~t[2]) & t[3]));
writeLane(17, t[2] ^ ((~t[3]) & t[4]));
writeLane(18, t[3] ^ ((~t[4]) & t[0]));
writeLane(19, t[4] ^ ((~t[0]) & t[1]));
t[0] = readLane(20);
t[1] = readLane(21);
t[2] = readLane(22);
t[3] = readLane(23);
t[4] = readLane(24);
writeLane(20, t[0] ^ ((~t[1]) & t[2]));
writeLane(21, t[1] ^ ((~t[2]) & t[3]));
writeLane(22, t[2] ^ ((~t[3]) & t[4]));
writeLane(23, t[3] ^ ((~t[4]) & t[0]));
writeLane(24, t[4] ^ ((~t[0]) & t[1]));
}
{ /* ι step (see [Keccak Reference, Section 2.3.5]) */
XORLane(0, round_constants[round]);
}
}
}
METHOD(sha3_keccak_t, get_rate, u_int,
private_sha3_keccak_t *this)
{
return this->rate;
}
METHOD(sha3_keccak_t, reset, void,
private_sha3_keccak_t *this)
{
memset(this->state, 0x00, KECCAK_STATE_SIZE);
this->rate_index = 0;
}
METHOD(sha3_keccak_t, absorb, void,
private_sha3_keccak_t *this, chunk_t data)
{
uint64_t *buffer_lanes, *state_lanes;
size_t len, rate_lanes;
int i;
buffer_lanes = (uint64_t*)this->rate_buffer;
state_lanes = (uint64_t*)this->state;
rate_lanes = this->rate / sizeof(uint64_t);
while (data.len)
{
len = min(data.len, this->rate - this->rate_index);
memcpy(this->rate_buffer + this->rate_index, data.ptr, len);
this->rate_index += len;
data.ptr += len;
data.len -= len;
if (this->rate_index == this->rate)
{
for (i = 0; i < rate_lanes; i++)
{
state_lanes[i] ^= buffer_lanes[i];
}
this->rate_index = 0;
keccak_f1600_state_permute(this->state);
}
}
}
METHOD(sha3_keccak_t, finalize, void,
private_sha3_keccak_t *this)
{
uint64_t *buffer_lanes, *state_lanes;
size_t rate_lanes, remainder;
int i;
/* Add the delimitedSuffix as the first bit of padding */
this->rate_buffer[this->rate_index++] = this->delimited_suffix;
buffer_lanes = (uint64_t*)this->rate_buffer;
state_lanes = (uint64_t*)this->state;
rate_lanes = this->rate_index / sizeof(uint64_t);
remainder = this->rate_index - rate_lanes * sizeof(uint64_t);
if (remainder)
{
memset(this->rate_buffer + this->rate_index, 0x00,
sizeof(uint64_t) - remainder);
rate_lanes++;
}
for (i = 0; i < rate_lanes; i++)
{
state_lanes[i] ^= buffer_lanes[i];
}
/* Add the second bit of padding */
this->state[this->rate - 1] ^= 0x80;
/* Switch to the squeezing phase */
keccak_f1600_state_permute(this->state);
this->rate_index = 0;
}
METHOD(sha3_keccak_t, squeeze, void,
private_sha3_keccak_t *this, size_t out_len, uint8_t *out)
{
size_t index = 0, len;
while (index < out_len)
{
if (this->rate_index == this->rate)
{
keccak_f1600_state_permute(this->state);
this->rate_index = 0;
}
len = min(out_len - index, this->rate - this->rate_index);
memcpy(out, &this->state[this->rate_index], len);
out += len;
index += len;
this->rate_index += len;
}
}
METHOD(sha3_keccak_t, destroy, void,
private_sha3_keccak_t *this)
{
free(this);
}
/*
* Described in header.
*/
sha3_keccak_t *sha3_keccak_create(u_int capacity, uint8_t delimited_suffix)
{
private_sha3_keccak_t *this;
int rate;
rate = KECCAK_STATE_SIZE - capacity;
if (rate <= 0 || rate > KECCAK_MAX_RATE)
{
return NULL;
}
INIT(this,
.public = {
.get_rate = _get_rate,
.reset = _reset,
.absorb = _absorb,
.finalize = _finalize,
.squeeze = _squeeze,
.destroy = _destroy,
},
.rate = rate,
.delimited_suffix = delimited_suffix,
);
return &this->public;
}
|