summaryrefslogtreecommitdiff
path: root/src/libstrongswan/plugins/xcbc/xcbc.c
blob: 3dbcda75ef26abde1efc4838ff0ce81a4de1137b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*
 * Copyright (C) 2012 Tobias Brunner
 * Copyright (C) 2008 Martin Willi
 * HSR Hochschule fuer Technik Rapperswil
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <http://www.fsf.org/copyleft/gpl.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 */

#include <string.h>

#include "xcbc.h"

#include <utils/debug.h>
#include <crypto/mac.h>
#include <crypto/prfs/mac_prf.h>
#include <crypto/signers/mac_signer.h>

typedef struct private_mac_t private_mac_t;

/**
 * Private data of a mac_t object.
 *
 * The variable names are the same as in the RFC.
 */
struct private_mac_t {

	/**
	 * Public mac_t interface.
	 */
	mac_t public;

	/**
	 * Block size, in bytes
	 */
	uint8_t b;

	/**
	 * crypter using k1
	 */
	crypter_t *k1;

	/**
	 * k2
	 */
	uint8_t *k2;

	/**
	 * k3
	 */
	uint8_t *k3;

	/**
	 * E
	 */
	uint8_t *e;

	/**
	 * remaining, unprocessed bytes in append mode
	 */
	uint8_t *remaining;

	/**
	 * number of bytes in remaining
	 */
	int remaining_bytes;

	/**
	 * TRUE if we have zero bytes to xcbc in final()
	 */
	bool zero;
};

/**
 * xcbc supplied data, but do not run final operation
 */
static bool update(private_mac_t *this, chunk_t data)
{
	chunk_t iv;

	if (data.len)
	{
		this->zero = FALSE;
	}

	if (this->remaining_bytes + data.len <= this->b)
	{	/* no complete block, just copy into remaining */
		memcpy(this->remaining + this->remaining_bytes, data.ptr, data.len);
		this->remaining_bytes += data.len;
		return TRUE;
	}

	iv = chunk_alloca(this->b);
	memset(iv.ptr, 0, iv.len);

	/* (3) For each block M[i], where i = 1 ... n-1:
	 *     XOR M[i] with E[i-1], then encrypt the result with Key K1,
	 *     yielding E[i].
	 */

	/* append data to remaining bytes, process block M[1] */
	memcpy(this->remaining + this->remaining_bytes, data.ptr,
		   this->b - this->remaining_bytes);
	data = chunk_skip(data, this->b - this->remaining_bytes);
	memxor(this->e, this->remaining, this->b);
	if (!this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL))
	{
		return FALSE;
	}

	/* process blocks M[2] ... M[n-1] */
	while (data.len > this->b)
	{
		memcpy(this->remaining, data.ptr, this->b);
		data = chunk_skip(data, this->b);
		memxor(this->e, this->remaining, this->b);
		if (!this->k1->encrypt(this->k1, chunk_create(this->e, this->b),
							   iv, NULL))
		{
			return FALSE;
		}
	}

	/* store remaining bytes of block M[n] */
	memcpy(this->remaining, data.ptr, data.len);
	this->remaining_bytes = data.len;

	return TRUE;
}

/**
 * run last round, data is in this->e
 */
static bool final(private_mac_t *this, uint8_t *out)
{
	chunk_t iv;

	iv = chunk_alloca(this->b);
	memset(iv.ptr, 0, iv.len);

	/* (4) For block M[n]: */
	if (this->remaining_bytes == this->b && !this->zero)
	{
		/* a) If the blocksize of M[n] is 128 bits:
		 *    XOR M[n] with E[n-1] and Key K2, then encrypt the result with
		 *    Key K1, yielding E[n].
		 */
		memxor(this->e, this->remaining, this->b);
		memxor(this->e, this->k2, this->b);
	}
	else
	{
		/* b) If the blocksize of M[n] is less than 128 bits:
		 *
		 *  i) Pad M[n] with a single "1" bit, followed by the number of
		 *     "0" bits (possibly none) required to increase M[n]'s
		 *     blocksize to 128 bits.
		 */
		if (this->remaining_bytes < this->b)
		{
			this->remaining[this->remaining_bytes] = 0x80;
			while (++this->remaining_bytes < this->b)
			{
				this->remaining[this->remaining_bytes] = 0x00;
			}
		}
		/*  ii) XOR M[n] with E[n-1] and Key K3, then encrypt the result
		 *      with Key K1, yielding E[n].
		 */
		memxor(this->e, this->remaining, this->b);
		memxor(this->e, this->k3, this->b);
	}
	if (!this->k1->encrypt(this->k1, chunk_create(this->e, this->b), iv, NULL))
	{
		return FALSE;
	}

	memcpy(out, this->e, this->b);

	/* (2) Define E[0] = 0x00000000000000000000000000000000 */
	memset(this->e, 0, this->b);
	this->remaining_bytes = 0;
	this->zero = TRUE;

	return TRUE;
}

METHOD(mac_t, get_mac, bool,
	private_mac_t *this, chunk_t data, uint8_t *out)
{
	/* update E, do not process last block */
	if (!update(this, data))
	{
		return FALSE;
	}

	if (out)
	{	/* if not in append mode, process last block and output result */
		return final(this, out);
	}
	return TRUE;
}

METHOD(mac_t, get_mac_size, size_t,
	private_mac_t *this)
{
	return this->b;
}

METHOD(mac_t, set_key, bool,
	private_mac_t *this, chunk_t key)
{
	chunk_t iv, k1, lengthened;

	memset(this->e, 0, this->b);
	this->remaining_bytes = 0;
	this->zero = TRUE;

	/* we support variable keys from RFC4434 */
	if (key.len == this->b)
	{
		lengthened = key;
	}
	else if (key.len < this->b)
	{	/* pad short keys */
		lengthened = chunk_alloca(this->b);
		memset(lengthened.ptr, 0, lengthened.len);
		memcpy(lengthened.ptr, key.ptr, key.len);
	}
	else
	{	/* shorten key using xcbc */
		lengthened = chunk_alloca(this->b);
		memset(lengthened.ptr, 0, lengthened.len);
		if (!set_key(this, lengthened) ||
			!get_mac(this, key, lengthened.ptr))
		{
			return FALSE;
		}
	}

	k1 = chunk_alloca(this->b);
	iv = chunk_alloca(this->b);
	memset(iv.ptr, 0, iv.len);

	/*
	 * (1) Derive 3 128-bit keys (K1, K2 and K3) from the 128-bit secret
	 *     key K, as follows:
	 *     K1 = 0x01010101010101010101010101010101 encrypted with Key K
	 *     K2 = 0x02020202020202020202020202020202 encrypted with Key K
	 *     K3 = 0x03030303030303030303030303030303 encrypted with Key K
	 */

	memset(k1.ptr, 0x01, this->b);
	memset(this->k2, 0x02, this->b);
	memset(this->k3, 0x03, this->b);

	if (!this->k1->set_key(this->k1, lengthened) ||
		!this->k1->encrypt(this->k1, chunk_create(this->k2, this->b), iv, NULL) ||
		!this->k1->encrypt(this->k1, chunk_create(this->k3, this->b), iv, NULL) ||
		!this->k1->encrypt(this->k1, k1, iv, NULL) ||
		!this->k1->set_key(this->k1, k1))
	{
		memwipe(k1.ptr, k1.len);
		return FALSE;
	}
	memwipe(k1.ptr, k1.len);
	return TRUE;
}

METHOD(mac_t, destroy, void,
	private_mac_t *this)
{
	this->k1->destroy(this->k1);
	memwipe(this->k2, this->b);
	free(this->k2);
	memwipe(this->k3, this->b);
	free(this->k3);
	free(this->e);
	free(this->remaining);
	free(this);
}

/*
 * Described in header
 */
static mac_t *xcbc_create(encryption_algorithm_t algo, size_t key_size)
{
	private_mac_t *this;
	crypter_t *crypter;
	uint8_t b;

	crypter = lib->crypto->create_crypter(lib->crypto, algo, key_size);
	if (!crypter)
	{
		return NULL;
	}
	b = crypter->get_block_size(crypter);
	/* input and output of crypter must be equal for xcbc */
	if (b != key_size)
	{
		crypter->destroy(crypter);
		return NULL;
	}

	INIT(this,
		.public = {
			.get_mac = _get_mac,
			.get_mac_size = _get_mac_size,
			.set_key = _set_key,
			.destroy = _destroy,
		},
		.b = b,
		.k1 = crypter,
		.k2 = malloc(b),
		.k3 = malloc(b),
		.e = malloc(b),
		.remaining = malloc(b),
		.zero = TRUE,
	);
	memset(this->e, 0, b);

	return &this->public;
}

/*
 * Described in header.
 */
prf_t *xcbc_prf_create(pseudo_random_function_t algo)
{
	mac_t *xcbc;

	switch (algo)
	{
		case PRF_AES128_XCBC:
			xcbc = xcbc_create(ENCR_AES_CBC, 16);
			break;
		case PRF_CAMELLIA128_XCBC:
			xcbc = xcbc_create(ENCR_CAMELLIA_CBC, 16);
			break;
		default:
			return NULL;
	}
	if (xcbc)
	{
		return mac_prf_create(xcbc);
	}
	return NULL;
}

/*
 * Described in header
 */
signer_t *xcbc_signer_create(integrity_algorithm_t algo)
{
	size_t trunc;
	mac_t *xcbc;

	switch (algo)
	{
		case AUTH_AES_XCBC_96:
			xcbc = xcbc_create(ENCR_AES_CBC, 16);
			trunc = 12;
			break;
		case AUTH_CAMELLIA_XCBC_96:
			xcbc = xcbc_create(ENCR_CAMELLIA_CBC, 16);
			trunc = 12;
			break;
		default:
			return NULL;
	}
	if (xcbc)
	{
		return mac_signer_create(xcbc, trunc);
	}
	return NULL;
}