summaryrefslogtreecommitdiff
path: root/Cluster.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Cluster.cpp')
-rw-r--r--Cluster.cpp1042
1 files changed, 1042 insertions, 0 deletions
diff --git a/Cluster.cpp b/Cluster.cpp
new file mode 100644
index 00000000..119aec29
--- /dev/null
+++ b/Cluster.cpp
@@ -0,0 +1,1042 @@
+/*
+ * ZeroTier One - Network Virtualization Everywhere
+ * Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * --
+ *
+ * You can be released from the requirements of the license by purchasing
+ * a commercial license. Buying such a license is mandatory as soon as you
+ * develop commercial closed-source software that incorporates or links
+ * directly against ZeroTier software without disclosing the source code
+ * of your own application.
+ */
+
+#ifdef ZT_ENABLE_CLUSTER
+
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#include <map>
+#include <algorithm>
+#include <set>
+#include <utility>
+#include <list>
+#include <stdexcept>
+
+#include "../version.h"
+
+#include "Cluster.hpp"
+#include "RuntimeEnvironment.hpp"
+#include "MulticastGroup.hpp"
+#include "CertificateOfMembership.hpp"
+#include "Salsa20.hpp"
+#include "Poly1305.hpp"
+#include "Identity.hpp"
+#include "Topology.hpp"
+#include "Packet.hpp"
+#include "Switch.hpp"
+#include "Node.hpp"
+#include "Network.hpp"
+#include "Array.hpp"
+
+namespace ZeroTier {
+
+static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
+ throw()
+{
+ double dx = ((double)x2 - (double)x1);
+ double dy = ((double)y2 - (double)y1);
+ double dz = ((double)z2 - (double)z1);
+ return sqrt((dx * dx) + (dy * dy) + (dz * dz));
+}
+
+// An entry in _ClusterSendQueue
+struct _ClusterSendQueueEntry
+{
+ uint64_t timestamp;
+ Address fromPeerAddress;
+ Address toPeerAddress;
+ // if we ever support larger transport MTUs this must be increased
+ unsigned char data[ZT_CLUSTER_SEND_QUEUE_DATA_MAX];
+ unsigned int len;
+ bool unite;
+};
+
+// A multi-index map with entry memory pooling -- this allows our queue to
+// be O(log(N)) and is complex enough that it makes the code a lot cleaner
+// to break it out from Cluster.
+class _ClusterSendQueue
+{
+public:
+ _ClusterSendQueue() :
+ _poolCount(0) {}
+ ~_ClusterSendQueue() {} // memory is automatically freed when _chunks is destroyed
+
+ inline void enqueue(uint64_t now,const Address &from,const Address &to,const void *data,unsigned int len,bool unite)
+ {
+ if (len > ZT_CLUSTER_SEND_QUEUE_DATA_MAX)
+ return;
+
+ Mutex::Lock _l(_lock);
+
+ // Delete oldest queue entry for this sender if this enqueue() would take them over the per-sender limit
+ {
+ std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(from,(_ClusterSendQueueEntry *)0)));
+ std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator oldest(qi);
+ unsigned long countForSender = 0;
+ while ((qi != _bySrc.end())&&(qi->first == from)) {
+ if (qi->second->timestamp < oldest->second->timestamp)
+ oldest = qi;
+ ++countForSender;
+ ++qi;
+ }
+ if (countForSender >= ZT_CLUSTER_MAX_QUEUE_PER_SENDER) {
+ _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(oldest->second->toPeerAddress,oldest->second));
+ _pool[_poolCount++] = oldest->second;
+ _bySrc.erase(oldest);
+ }
+ }
+
+ _ClusterSendQueueEntry *e;
+ if (_poolCount > 0) {
+ e = _pool[--_poolCount];
+ } else {
+ if (_chunks.size() >= ZT_CLUSTER_MAX_QUEUE_CHUNKS)
+ return; // queue is totally full!
+ _chunks.push_back(Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE>());
+ e = &(_chunks.back().data[0]);
+ for(unsigned int i=1;i<ZT_CLUSTER_QUEUE_CHUNK_SIZE;++i)
+ _pool[_poolCount++] = &(_chunks.back().data[i]);
+ }
+
+ e->timestamp = now;
+ e->fromPeerAddress = from;
+ e->toPeerAddress = to;
+ memcpy(e->data,data,len);
+ e->len = len;
+ e->unite = unite;
+
+ _bySrc.insert(std::pair<Address,_ClusterSendQueueEntry *>(from,e));
+ _byDest.insert(std::pair<Address,_ClusterSendQueueEntry *>(to,e));
+ }
+
+ inline void expire(uint64_t now)
+ {
+ Mutex::Lock _l(_lock);
+ for(std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.begin());qi!=_bySrc.end();) {
+ if ((now - qi->second->timestamp) > ZT_CLUSTER_QUEUE_EXPIRATION) {
+ _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->toPeerAddress,qi->second));
+ _pool[_poolCount++] = qi->second;
+ _bySrc.erase(qi++);
+ } else ++qi;
+ }
+ }
+
+ /**
+ * Get and dequeue entries for a given destination address
+ *
+ * After use these entries must be returned with returnToPool()!
+ *
+ * @param dest Destination address
+ * @param results Array to fill with results
+ * @param maxResults Size of results[] in pointers
+ * @return Number of actual results returned
+ */
+ inline unsigned int getByDest(const Address &dest,_ClusterSendQueueEntry **results,unsigned int maxResults)
+ {
+ unsigned int count = 0;
+ Mutex::Lock _l(_lock);
+ std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_byDest.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(dest,(_ClusterSendQueueEntry *)0)));
+ while ((qi != _byDest.end())&&(qi->first == dest)) {
+ _bySrc.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->fromPeerAddress,qi->second));
+ results[count++] = qi->second;
+ if (count == maxResults)
+ break;
+ _byDest.erase(qi++);
+ }
+ return count;
+ }
+
+ /**
+ * Return entries to pool after use
+ *
+ * @param entries Array of entries
+ * @param count Number of entries
+ */
+ inline void returnToPool(_ClusterSendQueueEntry **entries,unsigned int count)
+ {
+ Mutex::Lock _l(_lock);
+ for(unsigned int i=0;i<count;++i)
+ _pool[_poolCount++] = entries[i];
+ }
+
+private:
+ std::list< Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE> > _chunks;
+ _ClusterSendQueueEntry *_pool[ZT_CLUSTER_QUEUE_CHUNK_SIZE * ZT_CLUSTER_MAX_QUEUE_CHUNKS];
+ unsigned long _poolCount;
+ std::set< std::pair<Address,_ClusterSendQueueEntry *> > _bySrc;
+ std::set< std::pair<Address,_ClusterSendQueueEntry *> > _byDest;
+ Mutex _lock;
+};
+
+Cluster::Cluster(
+ const RuntimeEnvironment *renv,
+ uint16_t id,
+ const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
+ int32_t x,
+ int32_t y,
+ int32_t z,
+ void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
+ void *sendFunctionArg,
+ int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
+ void *addressToLocationFunctionArg) :
+ RR(renv),
+ _sendQueue(new _ClusterSendQueue()),
+ _sendFunction(sendFunction),
+ _sendFunctionArg(sendFunctionArg),
+ _addressToLocationFunction(addressToLocationFunction),
+ _addressToLocationFunctionArg(addressToLocationFunctionArg),
+ _x(x),
+ _y(y),
+ _z(z),
+ _id(id),
+ _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
+ _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
+ _lastFlushed(0),
+ _lastCleanedRemotePeers(0),
+ _lastCleanedQueue(0)
+{
+ uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
+
+ // Generate master secret by hashing the secret from our Identity key pair
+ RR->identity.sha512PrivateKey(_masterSecret);
+
+ // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
+ memcpy(stmp,_masterSecret,sizeof(stmp));
+ stmp[0] ^= Utils::hton(id);
+ SHA512::hash(stmp,stmp,sizeof(stmp));
+ SHA512::hash(stmp,stmp,sizeof(stmp));
+ memcpy(_key,stmp,sizeof(_key));
+ Utils::burn(stmp,sizeof(stmp));
+}
+
+Cluster::~Cluster()
+{
+ Utils::burn(_masterSecret,sizeof(_masterSecret));
+ Utils::burn(_key,sizeof(_key));
+ delete [] _members;
+ delete _sendQueue;
+}
+
+void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
+{
+ Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
+ {
+ // FORMAT: <[16] iv><[8] MAC><... data>
+ if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
+ return;
+
+ // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
+ char keytmp[32];
+ memcpy(keytmp,_key,32);
+ for(int i=0;i<8;++i)
+ keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
+ Salsa20 s20(keytmp,reinterpret_cast<const char *>(msg) + 8);
+ Utils::burn(keytmp,sizeof(keytmp));
+
+ // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
+ char polykey[ZT_POLY1305_KEY_LEN];
+ memset(polykey,0,sizeof(polykey));
+ s20.crypt12(polykey,polykey,sizeof(polykey));
+
+ // Compute 16-byte MAC
+ char mac[ZT_POLY1305_MAC_LEN];
+ Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
+
+ // Check first 8 bytes of MAC against 64-bit MAC in stream
+ if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
+ return;
+
+ // Decrypt!
+ dmsg.setSize(len - 24);
+ s20.crypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
+ }
+
+ if (dmsg.size() < 4)
+ return;
+ const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
+ unsigned int ptr = 2;
+ if (fromMemberId == _id) // sanity check: we don't talk to ourselves
+ return;
+ const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
+ ptr += 2;
+ if (toMemberId != _id) // sanity check: message not for us?
+ return;
+
+ { // make sure sender is actually considered a member
+ Mutex::Lock _l3(_memberIds_m);
+ if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
+ return;
+ }
+
+ try {
+ while (ptr < dmsg.size()) {
+ const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
+ const unsigned int nextPtr = ptr + mlen;
+ if (nextPtr > dmsg.size())
+ break;
+
+ int mtype = -1;
+ try {
+ switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
+ default:
+ break;
+
+ case CLUSTER_MESSAGE_ALIVE: {
+ _Member &m = _members[fromMemberId];
+ Mutex::Lock mlck(m.lock);
+ ptr += 7; // skip version stuff, not used yet
+ m.x = dmsg.at<int32_t>(ptr); ptr += 4;
+ m.y = dmsg.at<int32_t>(ptr); ptr += 4;
+ m.z = dmsg.at<int32_t>(ptr); ptr += 4;
+ ptr += 8; // skip local clock, not used
+ m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
+ m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
+ ptr += 8; // skip flags, unused
+#ifdef ZT_TRACE
+ std::string addrs;
+#endif
+ unsigned int physicalAddressCount = dmsg[ptr++];
+ m.zeroTierPhysicalEndpoints.clear();
+ for(unsigned int i=0;i<physicalAddressCount;++i) {
+ m.zeroTierPhysicalEndpoints.push_back(InetAddress());
+ ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
+ if (!(m.zeroTierPhysicalEndpoints.back())) {
+ m.zeroTierPhysicalEndpoints.pop_back();
+ }
+#ifdef ZT_TRACE
+ else {
+ if (addrs.length() > 0)
+ addrs.push_back(',');
+ addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
+ }
+#endif
+ }
+#ifdef ZT_TRACE
+ if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
+ TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
+ }
+#endif
+ m.lastReceivedAliveAnnouncement = RR->node->now();
+ } break;
+
+ case CLUSTER_MESSAGE_HAVE_PEER: {
+ Identity id;
+ ptr += id.deserialize(dmsg,ptr);
+ if (id) {
+ {
+ Mutex::Lock _l(_remotePeers_m);
+ _RemotePeer &rp = _remotePeers[std::pair<Address,unsigned int>(id.address(),(unsigned int)fromMemberId)];
+ if (!rp.lastHavePeerReceived) {
+ RR->topology->saveIdentity((void *)0,id);
+ RR->identity.agree(id,rp.key,ZT_PEER_SECRET_KEY_LENGTH);
+ }
+ rp.lastHavePeerReceived = RR->node->now();
+ }
+
+ _ClusterSendQueueEntry *q[16384]; // 16384 is "tons"
+ unsigned int qc = _sendQueue->getByDest(id.address(),q,16384);
+ for(unsigned int i=0;i<qc;++i)
+ this->relayViaCluster(q[i]->fromPeerAddress,q[i]->toPeerAddress,q[i]->data,q[i]->len,q[i]->unite);
+ _sendQueue->returnToPool(q,qc);
+
+ TRACE("[%u] has %s (retried %u queued sends)",(unsigned int)fromMemberId,id.address().toString().c_str(),qc);
+ }
+ } break;
+
+ case CLUSTER_MESSAGE_WANT_PEER: {
+ const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
+ SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
+ if ( (peer) && (peer->hasLocalClusterOptimalPath(RR->node->now())) ) {
+ Buffer<1024> buf;
+ peer->identity().serialize(buf);
+ Mutex::Lock _l2(_members[fromMemberId].lock);
+ _send(fromMemberId,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
+ }
+ } break;
+
+ case CLUSTER_MESSAGE_REMOTE_PACKET: {
+ const unsigned int plen = dmsg.at<uint16_t>(ptr); ptr += 2;
+ if (plen) {
+ Packet remotep(dmsg.field(ptr,plen),plen); ptr += plen;
+ //TRACE("remote %s from %s via %u (%u bytes)",Packet::verbString(remotep.verb()),remotep.source().toString().c_str(),fromMemberId,plen);
+ switch(remotep.verb()) {
+ case Packet::VERB_WHOIS: _doREMOTE_WHOIS(fromMemberId,remotep); break;
+ case Packet::VERB_MULTICAST_GATHER: _doREMOTE_MULTICAST_GATHER(fromMemberId,remotep); break;
+ default: break; // ignore things we don't care about across cluster
+ }
+ }
+ } break;
+
+ case CLUSTER_MESSAGE_PROXY_UNITE: {
+ const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
+ const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
+ const unsigned int numRemotePeerPaths = dmsg[ptr++];
+ InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
+ for(unsigned int i=0;i<numRemotePeerPaths;++i)
+ ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
+
+ TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
+
+ const uint64_t now = RR->node->now();
+ SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
+ if ((localPeer)&&(numRemotePeerPaths > 0)) {
+ InetAddress bestLocalV4,bestLocalV6;
+ localPeer->getRendezvousAddresses(now,bestLocalV4,bestLocalV6);
+
+ InetAddress bestRemoteV4,bestRemoteV6;
+ for(unsigned int i=0;i<numRemotePeerPaths;++i) {
+ if ((bestRemoteV4)&&(bestRemoteV6))
+ break;
+ switch(remotePeerPaths[i].ss_family) {
+ case AF_INET:
+ if (!bestRemoteV4)
+ bestRemoteV4 = remotePeerPaths[i];
+ break;
+ case AF_INET6:
+ if (!bestRemoteV6)
+ bestRemoteV6 = remotePeerPaths[i];
+ break;
+ }
+ }
+
+ Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
+ rendezvousForLocal.append((uint8_t)0);
+ remotePeerAddress.appendTo(rendezvousForLocal);
+
+ Buffer<2048> rendezvousForRemote;
+ remotePeerAddress.appendTo(rendezvousForRemote);
+ rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
+ rendezvousForRemote.addSize(2); // space for actual packet payload length
+ rendezvousForRemote.append((uint8_t)0); // flags == 0
+ localPeerAddress.appendTo(rendezvousForRemote);
+
+ bool haveMatch = false;
+ if ((bestLocalV6)&&(bestRemoteV6)) {
+ haveMatch = true;
+
+ rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
+ rendezvousForLocal.append((uint8_t)16);
+ rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
+
+ rendezvousForRemote.append((uint16_t)bestLocalV6.port());
+ rendezvousForRemote.append((uint8_t)16);
+ rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
+ rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 16));
+ } else if ((bestLocalV4)&&(bestRemoteV4)) {
+ haveMatch = true;
+
+ rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
+ rendezvousForLocal.append((uint8_t)4);
+ rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
+
+ rendezvousForRemote.append((uint16_t)bestLocalV4.port());
+ rendezvousForRemote.append((uint8_t)4);
+ rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
+ rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 4));
+ }
+
+ if (haveMatch) {
+ {
+ Mutex::Lock _l2(_members[fromMemberId].lock);
+ _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
+ }
+ RR->sw->send((void *)0,rendezvousForLocal,true);
+ }
+ }
+ } break;
+
+ case CLUSTER_MESSAGE_PROXY_SEND: {
+ const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
+ const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
+ const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
+ Packet outp(rcpt,RR->identity.address(),verb);
+ outp.append(dmsg.field(ptr,len),len); ptr += len;
+ RR->sw->send((void *)0,outp,true);
+ //TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
+ } break;
+
+ case CLUSTER_MESSAGE_NETWORK_CONFIG: {
+ const SharedPtr<Network> network(RR->node->network(dmsg.at<uint64_t>(ptr)));
+ if (network) {
+ // Copy into a Packet just to conform to Network API. Eventually
+ // will want to refactor.
+ network->handleConfigChunk((void *)0,0,Address(),Buffer<ZT_PROTO_MAX_PACKET_LENGTH>(dmsg),ptr);
+ }
+ } break;
+ }
+ } catch ( ... ) {
+ TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
+ // drop invalids
+ }
+
+ ptr = nextPtr;
+ }
+ } catch ( ... ) {
+ TRACE("invalid message (outer loop), discarding");
+ // drop invalids
+ }
+}
+
+void Cluster::broadcastHavePeer(const Identity &id)
+{
+ Buffer<1024> buf;
+ id.serialize(buf);
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ Mutex::Lock _l2(_members[*mid].lock);
+ _send(*mid,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
+ }
+}
+
+void Cluster::broadcastNetworkConfigChunk(const void *chunk,unsigned int len)
+{
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ Mutex::Lock _l2(_members[*mid].lock);
+ _send(*mid,CLUSTER_MESSAGE_NETWORK_CONFIG,chunk,len);
+ }
+}
+
+int Cluster::checkSendViaCluster(const Address &toPeerAddress,uint64_t &mostRecentTs,void *peerSecret)
+{
+ const uint64_t now = RR->node->now();
+ mostRecentTs = 0;
+ int mostRecentMemberId = -1;
+ {
+ Mutex::Lock _l2(_remotePeers_m);
+ std::map< std::pair<Address,unsigned int>,_RemotePeer >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
+ for(;;) {
+ if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
+ break;
+ else if (rpe->second.lastHavePeerReceived > mostRecentTs) {
+ mostRecentTs = rpe->second.lastHavePeerReceived;
+ memcpy(peerSecret,rpe->second.key,ZT_PEER_SECRET_KEY_LENGTH);
+ mostRecentMemberId = (int)rpe->first.second;
+ }
+ ++rpe;
+ }
+ }
+
+ const uint64_t ageOfMostRecentHavePeerAnnouncement = now - mostRecentTs;
+ if (ageOfMostRecentHavePeerAnnouncement >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
+ if (ageOfMostRecentHavePeerAnnouncement >= ZT_PEER_ACTIVITY_TIMEOUT)
+ mostRecentMemberId = -1;
+
+ bool sendWantPeer = true;
+ {
+ Mutex::Lock _l(_remotePeers_m);
+ _RemotePeer &rp = _remotePeers[std::pair<Address,unsigned int>(toPeerAddress,(unsigned int)_id)];
+ if ((now - rp.lastSentWantPeer) >= ZT_CLUSTER_WANT_PEER_EVERY) {
+ rp.lastSentWantPeer = now;
+ } else {
+ sendWantPeer = false; // don't flood WANT_PEER
+ }
+ }
+ if (sendWantPeer) {
+ char tmp[ZT_ADDRESS_LENGTH];
+ toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
+ {
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ Mutex::Lock _l2(_members[*mid].lock);
+ _send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
+ }
+ }
+ }
+ }
+
+ return mostRecentMemberId;
+}
+
+bool Cluster::sendViaCluster(int mostRecentMemberId,const Address &toPeerAddress,const void *data,unsigned int len)
+{
+ if ((mostRecentMemberId < 0)||(mostRecentMemberId >= ZT_CLUSTER_MAX_MEMBERS)) // sanity check
+ return false;
+ Mutex::Lock _l2(_members[mostRecentMemberId].lock);
+ for(std::vector<InetAddress>::const_iterator i1(_zeroTierPhysicalEndpoints.begin());i1!=_zeroTierPhysicalEndpoints.end();++i1) {
+ for(std::vector<InetAddress>::const_iterator i2(_members[mostRecentMemberId].zeroTierPhysicalEndpoints.begin());i2!=_members[mostRecentMemberId].zeroTierPhysicalEndpoints.end();++i2) {
+ if (i1->ss_family == i2->ss_family) {
+ TRACE("sendViaCluster sending %u bytes to %s by way of %u (%s->%s)",len,toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId,i1->toString().c_str(),i2->toString().c_str());
+ RR->node->putPacket((void *)0,*i1,*i2,data,len);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+void Cluster::relayViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
+{
+ if (len > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check
+ return;
+
+ const uint64_t now = RR->node->now();
+
+ uint64_t mostRecentTs = 0;
+ int mostRecentMemberId = -1;
+ {
+ Mutex::Lock _l2(_remotePeers_m);
+ std::map< std::pair<Address,unsigned int>,_RemotePeer >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
+ for(;;) {
+ if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
+ break;
+ else if (rpe->second.lastHavePeerReceived > mostRecentTs) {
+ mostRecentTs = rpe->second.lastHavePeerReceived;
+ mostRecentMemberId = (int)rpe->first.second;
+ }
+ ++rpe;
+ }
+ }
+
+ const uint64_t ageOfMostRecentHavePeerAnnouncement = now - mostRecentTs;
+ if (ageOfMostRecentHavePeerAnnouncement >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
+ // Enqueue and wait if peer seems alive, but do WANT_PEER to refresh homing
+ const bool enqueueAndWait = ((ageOfMostRecentHavePeerAnnouncement >= ZT_PEER_ACTIVITY_TIMEOUT)||(mostRecentMemberId < 0));
+
+ // Poll everyone with WANT_PEER if the age of our most recent entry is
+ // approaching expiration (or has expired, or does not exist).
+ bool sendWantPeer = true;
+ {
+ Mutex::Lock _l(_remotePeers_m);
+ _RemotePeer &rp = _remotePeers[std::pair<Address,unsigned int>(toPeerAddress,(unsigned int)_id)];
+ if ((now - rp.lastSentWantPeer) >= ZT_CLUSTER_WANT_PEER_EVERY) {
+ rp.lastSentWantPeer = now;
+ } else {
+ sendWantPeer = false; // don't flood WANT_PEER
+ }
+ }
+ if (sendWantPeer) {
+ char tmp[ZT_ADDRESS_LENGTH];
+ toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
+ {
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ Mutex::Lock _l2(_members[*mid].lock);
+ _send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
+ }
+ }
+ }
+
+ // If there isn't a good place to send via, then enqueue this for retrying
+ // later and return after having broadcasted a WANT_PEER.
+ if (enqueueAndWait) {
+ TRACE("relayViaCluster %s -> %s enqueueing to wait for HAVE_PEER",fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
+ _sendQueue->enqueue(now,fromPeerAddress,toPeerAddress,data,len,unite);
+ return;
+ }
+ }
+
+ if (mostRecentMemberId >= 0) {
+ Buffer<1024> buf;
+ if (unite) {
+ InetAddress v4,v6;
+ if (fromPeerAddress) {
+ SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
+ if (fromPeer)
+ fromPeer->getRendezvousAddresses(now,v4,v6);
+ }
+ uint8_t addrCount = 0;
+ if (v4)
+ ++addrCount;
+ if (v6)
+ ++addrCount;
+ if (addrCount) {
+ toPeerAddress.appendTo(buf);
+ fromPeerAddress.appendTo(buf);
+ buf.append(addrCount);
+ if (v4)
+ v4.serialize(buf);
+ if (v6)
+ v6.serialize(buf);
+ }
+ }
+
+ {
+ Mutex::Lock _l2(_members[mostRecentMemberId].lock);
+ if (buf.size() > 0)
+ _send(mostRecentMemberId,CLUSTER_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
+
+ for(std::vector<InetAddress>::const_iterator i1(_zeroTierPhysicalEndpoints.begin());i1!=_zeroTierPhysicalEndpoints.end();++i1) {
+ for(std::vector<InetAddress>::const_iterator i2(_members[mostRecentMemberId].zeroTierPhysicalEndpoints.begin());i2!=_members[mostRecentMemberId].zeroTierPhysicalEndpoints.end();++i2) {
+ if (i1->ss_family == i2->ss_family) {
+ TRACE("relayViaCluster relaying %u bytes from %s to %s by way of %u (%s->%s)",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId,i1->toString().c_str(),i2->toString().c_str());
+ RR->node->putPacket((void *)0,*i1,*i2,data,len);
+ return;
+ }
+ }
+ }
+
+ TRACE("relayViaCluster relaying %u bytes from %s to %s by way of %u failed: no common endpoints with the same address family!",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId);
+ }
+ }
+}
+
+void Cluster::sendDistributedQuery(const Packet &pkt)
+{
+ Buffer<4096> buf;
+ buf.append((uint16_t)pkt.size());
+ buf.append(pkt.data(),pkt.size());
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ Mutex::Lock _l2(_members[*mid].lock);
+ _send(*mid,CLUSTER_MESSAGE_REMOTE_PACKET,buf.data(),buf.size());
+ }
+}
+
+void Cluster::doPeriodicTasks()
+{
+ const uint64_t now = RR->node->now();
+
+ if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
+ _lastFlushed = now;
+
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ Mutex::Lock _l2(_members[*mid].lock);
+
+ if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
+ _members[*mid].lastAnnouncedAliveTo = now;
+
+ Buffer<2048> alive;
+ alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
+ alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
+ alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
+ alive.append((uint8_t)ZT_PROTO_VERSION);
+ if (_addressToLocationFunction) {
+ alive.append((int32_t)_x);
+ alive.append((int32_t)_y);
+ alive.append((int32_t)_z);
+ } else {
+ alive.append((int32_t)0);
+ alive.append((int32_t)0);
+ alive.append((int32_t)0);
+ }
+ alive.append((uint64_t)now);
+ alive.append((uint64_t)0); // TODO: compute and send load average
+ alive.append((uint64_t)RR->topology->countActive(now));
+ alive.append((uint64_t)0); // unused/reserved flags
+ alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
+ for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
+ pe->serialize(alive);
+ _send(*mid,CLUSTER_MESSAGE_ALIVE,alive.data(),alive.size());
+ }
+
+ _flush(*mid);
+ }
+ }
+
+ if ((now - _lastCleanedRemotePeers) >= (ZT_PEER_ACTIVITY_TIMEOUT * 2)) {
+ _lastCleanedRemotePeers = now;
+
+ Mutex::Lock _l(_remotePeers_m);
+ for(std::map< std::pair<Address,unsigned int>,_RemotePeer >::iterator rp(_remotePeers.begin());rp!=_remotePeers.end();) {
+ if ((now - rp->second.lastHavePeerReceived) >= ZT_PEER_ACTIVITY_TIMEOUT)
+ _remotePeers.erase(rp++);
+ else ++rp;
+ }
+ }
+
+ if ((now - _lastCleanedQueue) >= ZT_CLUSTER_QUEUE_EXPIRATION) {
+ _lastCleanedQueue = now;
+ _sendQueue->expire(now);
+ }
+}
+
+void Cluster::addMember(uint16_t memberId)
+{
+ if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
+ return;
+
+ Mutex::Lock _l2(_members[memberId].lock);
+
+ {
+ Mutex::Lock _l(_memberIds_m);
+ if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
+ return;
+ _memberIds.push_back(memberId);
+ std::sort(_memberIds.begin(),_memberIds.end());
+ }
+
+ _members[memberId].clear();
+
+ // Generate this member's message key from the master and its ID
+ uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
+ memcpy(stmp,_masterSecret,sizeof(stmp));
+ stmp[0] ^= Utils::hton(memberId);
+ SHA512::hash(stmp,stmp,sizeof(stmp));
+ SHA512::hash(stmp,stmp,sizeof(stmp));
+ memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
+ Utils::burn(stmp,sizeof(stmp));
+
+ // Prepare q
+ _members[memberId].q.clear();
+ char iv[16];
+ Utils::getSecureRandom(iv,16);
+ _members[memberId].q.append(iv,16);
+ _members[memberId].q.addSize(8); // room for MAC
+ _members[memberId].q.append((uint16_t)_id);
+ _members[memberId].q.append((uint16_t)memberId);
+}
+
+void Cluster::removeMember(uint16_t memberId)
+{
+ Mutex::Lock _l(_memberIds_m);
+ std::vector<uint16_t> newMemberIds;
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ if (*mid != memberId)
+ newMemberIds.push_back(*mid);
+ }
+ _memberIds = newMemberIds;
+}
+
+bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
+{
+ if (_addressToLocationFunction) {
+ // Pick based on location if it can be determined
+ int px = 0,py = 0,pz = 0;
+ if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
+ TRACE("no geolocation data for %s",peerPhysicalAddress.toIpString().c_str());
+ return false;
+ }
+
+ // Find member closest to this peer
+ const uint64_t now = RR->node->now();
+ std::vector<InetAddress> best;
+ const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
+ double bestDistance = (offload ? 2147483648.0 : currentDistance);
+#ifdef ZT_TRACE
+ unsigned int bestMember = _id;
+#endif
+ {
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ _Member &m = _members[*mid];
+ Mutex::Lock _ml(m.lock);
+
+ // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
+ if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
+ const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
+ if (mdist < bestDistance) {
+ bestDistance = mdist;
+#ifdef ZT_TRACE
+ bestMember = *mid;
+#endif
+ best = m.zeroTierPhysicalEndpoints;
+ }
+ }
+ }
+ }
+
+ // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
+ for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
+ if (a->ss_family == peerPhysicalAddress.ss_family) {
+ TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
+ redirectTo = *a;
+ return true;
+ }
+ }
+ TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
+ return false;
+ } else {
+ // TODO: pick based on load if no location info?
+ return false;
+ }
+}
+
+bool Cluster::isClusterPeerFrontplane(const InetAddress &ip) const
+{
+ Mutex::Lock _l(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ Mutex::Lock _l2(_members[*mid].lock);
+ for(std::vector<InetAddress>::const_iterator i2(_members[*mid].zeroTierPhysicalEndpoints.begin());i2!=_members[*mid].zeroTierPhysicalEndpoints.end();++i2) {
+ if (ip == *i2)
+ return true;
+ }
+ }
+ return false;
+}
+
+void Cluster::status(ZT_ClusterStatus &status) const
+{
+ const uint64_t now = RR->node->now();
+ memset(&status,0,sizeof(ZT_ClusterStatus));
+
+ status.myId = _id;
+
+ {
+ ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
+ s->id = _id;
+ s->alive = 1;
+ s->x = _x;
+ s->y = _y;
+ s->z = _z;
+ s->load = 0; // TODO
+ s->peers = RR->topology->countActive(now);
+ for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
+ if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
+ break;
+ memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
+ }
+ }
+
+ {
+ Mutex::Lock _l1(_memberIds_m);
+ for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
+ if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
+ break;
+
+ _Member &m = _members[*mid];
+ Mutex::Lock ml(m.lock);
+
+ ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
+ s->id = *mid;
+ s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
+ s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
+ s->x = m.x;
+ s->y = m.y;
+ s->z = m.z;
+ s->load = m.load;
+ s->peers = m.peers;
+ for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
+ if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
+ break;
+ memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
+ }
+ }
+ }
+}
+
+void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
+{
+ if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
+ return;
+ _Member &m = _members[memberId];
+ // assumes m.lock is locked!
+ if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
+ _flush(memberId);
+ m.q.append((uint16_t)(len + 1));
+ m.q.append((uint8_t)type);
+ m.q.append(msg,len);
+}
+
+void Cluster::_flush(uint16_t memberId)
+{
+ _Member &m = _members[memberId];
+ // assumes m.lock is locked!
+ if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
+ // Create key from member's key and IV
+ char keytmp[32];
+ memcpy(keytmp,m.key,32);
+ for(int i=0;i<8;++i)
+ keytmp[i] ^= m.q[i];
+ Salsa20 s20(keytmp,m.q.field(8,8));
+ Utils::burn(keytmp,sizeof(keytmp));
+
+ // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
+ char polykey[ZT_POLY1305_KEY_LEN];
+ memset(polykey,0,sizeof(polykey));
+ s20.crypt12(polykey,polykey,sizeof(polykey));
+
+ // Encrypt m.q in place
+ s20.crypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
+
+ // Add MAC for authentication (encrypt-then-MAC)
+ char mac[ZT_POLY1305_MAC_LEN];
+ Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
+ memcpy(m.q.field(16,8),mac,8);
+
+ // Send!
+ _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
+
+ // Prepare for more
+ m.q.clear();
+ char iv[16];
+ Utils::getSecureRandom(iv,16);
+ m.q.append(iv,16);
+ m.q.addSize(8); // room for MAC
+ m.q.append((uint16_t)_id); // from member ID
+ m.q.append((uint16_t)memberId); // to member ID
+ }
+}
+
+void Cluster::_doREMOTE_WHOIS(uint64_t fromMemberId,const Packet &remotep)
+{
+ if (remotep.payloadLength() >= ZT_ADDRESS_LENGTH) {
+ Identity queried(RR->topology->getIdentity((void *)0,Address(remotep.payload(),ZT_ADDRESS_LENGTH)));
+ if (queried) {
+ Buffer<1024> routp;
+ remotep.source().appendTo(routp);
+ routp.append((uint8_t)Packet::VERB_OK);
+ routp.addSize(2); // space for length
+ routp.append((uint8_t)Packet::VERB_WHOIS);
+ routp.append(remotep.packetId());
+ queried.serialize(routp);
+ routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
+
+ TRACE("responding to remote WHOIS from %s @ %u with identity of %s",remotep.source().toString().c_str(),(unsigned int)fromMemberId,queried.address().toString().c_str());
+ Mutex::Lock _l2(_members[fromMemberId].lock);
+ _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
+ }
+ }
+}
+
+void Cluster::_doREMOTE_MULTICAST_GATHER(uint64_t fromMemberId,const Packet &remotep)
+{
+ const uint64_t nwid = remotep.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
+ const MulticastGroup mg(MAC(remotep.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
+ unsigned int gatherLimit = remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
+ const Address remotePeerAddress(remotep.source());
+
+ if (gatherLimit) {
+ Buffer<ZT_PROTO_MAX_PACKET_LENGTH> routp;
+ remotePeerAddress.appendTo(routp);
+ routp.append((uint8_t)Packet::VERB_OK);
+ routp.addSize(2); // space for length
+ routp.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
+ routp.append(remotep.packetId());
+ routp.append(nwid);
+ mg.mac().appendTo(routp);
+ routp.append((uint32_t)mg.adi());
+
+ if (gatherLimit > ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5))
+ gatherLimit = ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5);
+ if (RR->mc->gather(remotePeerAddress,nwid,mg,routp,gatherLimit)) {
+ routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
+
+ TRACE("responding to remote MULTICAST_GATHER from %s @ %u with %u bytes",remotePeerAddress.toString().c_str(),(unsigned int)fromMemberId,routp.size());
+ Mutex::Lock _l2(_members[fromMemberId].lock);
+ _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
+ }
+ }
+}
+
+} // namespace ZeroTier
+
+#endif // ZT_ENABLE_CLUSTER