summaryrefslogtreecommitdiff
path: root/node/Capability.hpp
blob: 775532d98af7a1a8b4617d37698b52be65616b15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2018  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * --
 *
 * You can be released from the requirements of the license by purchasing
 * a commercial license. Buying such a license is mandatory as soon as you
 * develop commercial closed-source software that incorporates or links
 * directly against ZeroTier software without disclosing the source code
 * of your own application.
 */

#ifndef ZT_CAPABILITY_HPP
#define ZT_CAPABILITY_HPP

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "Constants.hpp"
#include "Credential.hpp"
#include "Address.hpp"
#include "C25519.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
#include "Identity.hpp"
#include "../include/ZeroTierOne.h"

namespace ZeroTier {

class RuntimeEnvironment;

/**
 * A set of grouped and signed network flow rules
 *
 * On the sending side the sender does the following for each packet:
 *
 * (1) Evaluates its capabilities in ascending order of ID to determine
 *     which capability allows it to transmit this packet.
 * (2) If it has not done so lately, it then sends this capability to the
 *     receiving peer ("presents" it).
 * (3) The sender then sends the packet.
 *
 * On the receiving side the receiver evaluates the capabilities presented
 * by the sender. If any valid un-expired capability allows this packet it
 * is accepted.
 *
 * Note that this is after evaluation of network scope rules and only if
 * network scope rules do not deliver an explicit match.
 *
 * Capabilities support a chain of custody. This is currently unused but
 * in the future would allow the publication of capabilities that can be
 * handed off between nodes. Limited transferability of capabilities is
 * a feature of true capability based security.
 */
class Capability : public Credential
{
public:
	static inline Credential::Type credentialType() { return Credential::CREDENTIAL_TYPE_CAPABILITY; }

	Capability()
	{
		memset(this,0,sizeof(Capability));
	}

	/**
	 * @param id Capability ID
	 * @param nwid Network ID
	 * @param ts Timestamp (at controller)
	 * @param mccl Maximum custody chain length (1 to create non-transferable capability)
	 * @param rules Network flow rules for this capability
	 * @param ruleCount Number of flow rules
	 */
	Capability(uint32_t id,uint64_t nwid,int64_t ts,unsigned int mccl,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount)
	{
		memset(this,0,sizeof(Capability));
		_nwid = nwid;
		_ts = ts;
		_id = id;
		_maxCustodyChainLength = (mccl > 0) ? ((mccl < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) ? mccl : (unsigned int)ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) : 1;
		_ruleCount = (ruleCount < ZT_MAX_CAPABILITY_RULES) ? ruleCount : ZT_MAX_CAPABILITY_RULES;
		if (_ruleCount)
			ZT_FAST_MEMCPY(_rules,rules,sizeof(ZT_VirtualNetworkRule) * _ruleCount);
	}

	/**
	 * @return Rules -- see ruleCount() for size of array
	 */
	inline const ZT_VirtualNetworkRule *rules() const { return _rules; }

	/**
	 * @return Number of rules in rules()
	 */
	inline unsigned int ruleCount() const { return _ruleCount; }

	/**
	 * @return ID and evaluation order of this capability in network
	 */
	inline uint32_t id() const { return _id; }

	/**
	 * @return Network ID for which this capability was issued
	 */
	inline uint64_t networkId() const { return _nwid; }

	/**
	 * @return Timestamp
	 */
	inline int64_t timestamp() const { return _ts; }

	/**
	 * @return Last 'to' address in chain of custody
	 */
	inline Address issuedTo() const
	{
		Address i2;
		for(unsigned int i=0;i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH;++i) {
			if (!_custody[i].to)
				return i2;
			else i2 = _custody[i].to;
		}
		return i2;
	}

	/**
	 * Sign this capability and add signature to its chain of custody
	 *
	 * If this returns false, this object should be considered to be
	 * in an undefined state and should be discarded. False can be returned
	 * if there is no more room for signatures (max chain length reached)
	 * or if the 'from' identity does not include a secret key to allow
	 * it to sign anything.
	 *
	 * @param from Signing identity (must have secret)
	 * @param to Recipient of this signature
	 * @return True if signature successful and chain of custody appended
	 */
	inline bool sign(const Identity &from,const Address &to)
	{
		try {
			for(unsigned int i=0;((i<_maxCustodyChainLength)&&(i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH));++i) {
				if (!(_custody[i].to)) {
					Buffer<(sizeof(Capability) * 2)> tmp;
					this->serialize(tmp,true);
					_custody[i].to = to;
					_custody[i].from = from.address();
					_custody[i].signature = from.sign(tmp.data(),tmp.size());
					return true;
				}
			}
		} catch ( ... ) {}
		return false;
	}

	/**
	 * Verify this capability's chain of custody and signatures
	 *
	 * @param RR Runtime environment to provide for peer lookup, etc.
	 * @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or chain
	 */
	int verify(const RuntimeEnvironment *RR,void *tPtr) const;

	template<unsigned int C>
	static inline void serializeRules(Buffer<C> &b,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount)
	{
		for(unsigned int i=0;i<ruleCount;++i) {
			// Each rule consists of its 8-bit type followed by the size of that type's
			// field followed by field data. The inclusion of the size will allow non-supported
			// rules to be ignored but still parsed.
			b.append((uint8_t)rules[i].t);
			switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3f)) {
				default:
					b.append((uint8_t)0);
					break;
				case ZT_NETWORK_RULE_ACTION_TEE:
				case ZT_NETWORK_RULE_ACTION_WATCH:
				case ZT_NETWORK_RULE_ACTION_REDIRECT:
					b.append((uint8_t)14);
					b.append((uint64_t)rules[i].v.fwd.address);
					b.append((uint32_t)rules[i].v.fwd.flags);
					b.append((uint16_t)rules[i].v.fwd.length); // unused for redirect
					break;
				case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
				case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
					b.append((uint8_t)5);
					Address(rules[i].v.zt).appendTo(b);
					break;
				case ZT_NETWORK_RULE_MATCH_VLAN_ID:
					b.append((uint8_t)2);
					b.append((uint16_t)rules[i].v.vlanId);
					break;
				case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
					b.append((uint8_t)1);
					b.append((uint8_t)rules[i].v.vlanPcp);
					break;
				case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
					b.append((uint8_t)1);
					b.append((uint8_t)rules[i].v.vlanDei);
					break;
				case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
				case ZT_NETWORK_RULE_MATCH_MAC_DEST:
					b.append((uint8_t)6);
					b.append(rules[i].v.mac,6);
					break;
				case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
				case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
					b.append((uint8_t)5);
					b.append(&(rules[i].v.ipv4.ip),4);
					b.append((uint8_t)rules[i].v.ipv4.mask);
					break;
				case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
				case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
					b.append((uint8_t)17);
					b.append(rules[i].v.ipv6.ip,16);
					b.append((uint8_t)rules[i].v.ipv6.mask);
					break;
				case ZT_NETWORK_RULE_MATCH_IP_TOS:
					b.append((uint8_t)3);
					b.append((uint8_t)rules[i].v.ipTos.mask);
					b.append((uint8_t)rules[i].v.ipTos.value[0]);
					b.append((uint8_t)rules[i].v.ipTos.value[1]);
					break;
				case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
					b.append((uint8_t)1);
					b.append((uint8_t)rules[i].v.ipProtocol);
					break;
				case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
					b.append((uint8_t)2);
					b.append((uint16_t)rules[i].v.etherType);
					break;
				case ZT_NETWORK_RULE_MATCH_ICMP:
					b.append((uint8_t)3);
					b.append((uint8_t)rules[i].v.icmp.type);
					b.append((uint8_t)rules[i].v.icmp.code);
					b.append((uint8_t)rules[i].v.icmp.flags);
					break;
				case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
				case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
					b.append((uint8_t)4);
					b.append((uint16_t)rules[i].v.port[0]);
					b.append((uint16_t)rules[i].v.port[1]);
					break;
				case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
					b.append((uint8_t)8);
					b.append((uint64_t)rules[i].v.characteristics);
					break;
				case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
					b.append((uint8_t)4);
					b.append((uint16_t)rules[i].v.frameSize[0]);
					b.append((uint16_t)rules[i].v.frameSize[1]);
					break;
				case ZT_NETWORK_RULE_MATCH_RANDOM:
					b.append((uint8_t)4);
					b.append((uint32_t)rules[i].v.randomProbability);
					break;
				case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
				case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
				case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
				case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
					b.append((uint8_t)8);
					b.append((uint32_t)rules[i].v.tag.id);
					b.append((uint32_t)rules[i].v.tag.value);
					break;
				case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
					b.append((uint8_t)19);
					b.append((uint64_t)rules[i].v.intRange.start);
					b.append((uint64_t)(rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end)); // more future-proof
					b.append((uint16_t)rules[i].v.intRange.idx);
					b.append((uint8_t)rules[i].v.intRange.format);
					break;
			}
		}
	}

	template<unsigned int C>
	static inline void deserializeRules(const Buffer<C> &b,unsigned int &p,ZT_VirtualNetworkRule *rules,unsigned int &ruleCount,const unsigned int maxRuleCount)
	{
		while ((ruleCount < maxRuleCount)&&(p < b.size())) {
			rules[ruleCount].t = (uint8_t)b[p++];
			const unsigned int fieldLen = (unsigned int)b[p++];
			switch((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) {
				default:
					break;
				case ZT_NETWORK_RULE_ACTION_TEE:
				case ZT_NETWORK_RULE_ACTION_WATCH:
				case ZT_NETWORK_RULE_ACTION_REDIRECT:
					rules[ruleCount].v.fwd.address = b.template at<uint64_t>(p);
					rules[ruleCount].v.fwd.flags = b.template at<uint32_t>(p + 8);
					rules[ruleCount].v.fwd.length = b.template at<uint16_t>(p + 12);
					break;
				case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
				case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
					rules[ruleCount].v.zt = Address(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt();
					break;
				case ZT_NETWORK_RULE_MATCH_VLAN_ID:
					rules[ruleCount].v.vlanId = b.template at<uint16_t>(p);
					break;
				case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
					rules[ruleCount].v.vlanPcp = (uint8_t)b[p];
					break;
				case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
					rules[ruleCount].v.vlanDei = (uint8_t)b[p];
					break;
				case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
				case ZT_NETWORK_RULE_MATCH_MAC_DEST:
					ZT_FAST_MEMCPY(rules[ruleCount].v.mac,b.field(p,6),6);
					break;
				case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
				case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
					ZT_FAST_MEMCPY(&(rules[ruleCount].v.ipv4.ip),b.field(p,4),4);
					rules[ruleCount].v.ipv4.mask = (uint8_t)b[p + 4];
					break;
				case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
				case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
					ZT_FAST_MEMCPY(rules[ruleCount].v.ipv6.ip,b.field(p,16),16);
					rules[ruleCount].v.ipv6.mask = (uint8_t)b[p + 16];
					break;
				case ZT_NETWORK_RULE_MATCH_IP_TOS:
					rules[ruleCount].v.ipTos.mask = (uint8_t)b[p];
					rules[ruleCount].v.ipTos.value[0] = (uint8_t)b[p+1];
					rules[ruleCount].v.ipTos.value[1] = (uint8_t)b[p+2];
					break;
				case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
					rules[ruleCount].v.ipProtocol = (uint8_t)b[p];
					break;
				case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
					rules[ruleCount].v.etherType = b.template at<uint16_t>(p);
					break;
				case ZT_NETWORK_RULE_MATCH_ICMP:
					rules[ruleCount].v.icmp.type = (uint8_t)b[p];
					rules[ruleCount].v.icmp.code = (uint8_t)b[p+1];
					rules[ruleCount].v.icmp.flags = (uint8_t)b[p+2];
					break;
				case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
				case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
					rules[ruleCount].v.port[0] = b.template at<uint16_t>(p);
					rules[ruleCount].v.port[1] = b.template at<uint16_t>(p + 2);
					break;
				case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
					rules[ruleCount].v.characteristics = b.template at<uint64_t>(p);
					break;
				case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
					rules[ruleCount].v.frameSize[0] = b.template at<uint16_t>(p);
					rules[ruleCount].v.frameSize[1] = b.template at<uint16_t>(p + 2);
					break;
				case ZT_NETWORK_RULE_MATCH_RANDOM:
					rules[ruleCount].v.randomProbability = b.template at<uint32_t>(p);
					break;
				case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
				case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
				case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
				case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
					rules[ruleCount].v.tag.id = b.template at<uint32_t>(p);
					rules[ruleCount].v.tag.value = b.template at<uint32_t>(p + 4);
					break;
				case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
					rules[ruleCount].v.intRange.start = b.template at<uint64_t>(p);
					rules[ruleCount].v.intRange.end = (uint32_t)(b.template at<uint64_t>(p + 8) - rules[ruleCount].v.intRange.start);
					rules[ruleCount].v.intRange.idx = b.template at<uint16_t>(p + 16);
					rules[ruleCount].v.intRange.format = (uint8_t)b[p + 18];
					break;
			}
			p += fieldLen;
			++ruleCount;
		}
	}

	template<unsigned int C>
	inline void serialize(Buffer<C> &b,const bool forSign = false) const
	{
		if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);

		// These are the same between Tag and Capability
		b.append(_nwid);
		b.append(_ts);
		b.append(_id);

		b.append((uint16_t)_ruleCount);
		serializeRules(b,_rules,_ruleCount);
		b.append((uint8_t)_maxCustodyChainLength);

		if (!forSign) {
			for(unsigned int i=0;;++i) {
				if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) {
					_custody[i].to.appendTo(b);
					_custody[i].from.appendTo(b);
					b.append((uint8_t)1); // 1 == Ed25519 signature
					b.append((uint16_t)ZT_C25519_SIGNATURE_LEN); // length of signature
					b.append(_custody[i].signature.data,ZT_C25519_SIGNATURE_LEN);
				} else {
					b.append((unsigned char)0,ZT_ADDRESS_LENGTH); // zero 'to' terminates chain
					break;
				}
			}
		}

		// This is the size of any additional fields, currently 0.
		b.append((uint16_t)0);

		if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
	}

	template<unsigned int C>
	inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
	{
		memset(this,0,sizeof(Capability));

		unsigned int p = startAt;

		_nwid = b.template at<uint64_t>(p); p += 8;
		_ts = b.template at<uint64_t>(p); p += 8;
		_id = b.template at<uint32_t>(p); p += 4;

		const unsigned int rc = b.template at<uint16_t>(p); p += 2;
		if (rc > ZT_MAX_CAPABILITY_RULES)
			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
		deserializeRules(b,p,_rules,_ruleCount,rc);

		_maxCustodyChainLength = (unsigned int)b[p++];
		if ((_maxCustodyChainLength < 1)||(_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;

		for(unsigned int i=0;;++i) {
			const Address to(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
			if (!to)
				break;
			if ((i >= _maxCustodyChainLength)||(i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
				throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
			_custody[i].to = to;
			_custody[i].from.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
			if (b[p++] == 1) {
				if (b.template at<uint16_t>(p) != ZT_C25519_SIGNATURE_LEN)
					throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
				p += 2;
				ZT_FAST_MEMCPY(_custody[i].signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN); p += ZT_C25519_SIGNATURE_LEN;
			} else {
				p += 2 + b.template at<uint16_t>(p);
			}
		}

		p += 2 + b.template at<uint16_t>(p);
		if (p > b.size())
			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;

		return (p - startAt);
	}

	// Provides natural sort order by ID
	inline bool operator<(const Capability &c) const { return (_id < c._id); }

	inline bool operator==(const Capability &c) const { return (memcmp(this,&c,sizeof(Capability)) == 0); }
	inline bool operator!=(const Capability &c) const { return (memcmp(this,&c,sizeof(Capability)) != 0); }

private:
	uint64_t _nwid;
	int64_t _ts;
	uint32_t _id;

	unsigned int _maxCustodyChainLength;

	unsigned int _ruleCount;
	ZT_VirtualNetworkRule _rules[ZT_MAX_CAPABILITY_RULES];

	struct {
		Address to;
		Address from;
		C25519::Signature signature;
	} _custody[ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH];
};

} // namespace ZeroTier

#endif