summaryrefslogtreecommitdiff
path: root/node/Cluster.cpp
blob: c08bf0020046fd96711040f559529410830b8c1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2015  ZeroTier, Inc.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * --
 *
 * ZeroTier may be used and distributed under the terms of the GPLv3, which
 * are available at: http://www.gnu.org/licenses/gpl-3.0.html
 *
 * If you would like to embed ZeroTier into a commercial application or
 * redistribute it in a modified binary form, please contact ZeroTier Networks
 * LLC. Start here: http://www.zerotier.com/
 */

#ifdef ZT_ENABLE_CLUSTER

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <algorithm>
#include <utility>

#include "Cluster.hpp"
#include "RuntimeEnvironment.hpp"
#include "MulticastGroup.hpp"
#include "CertificateOfMembership.hpp"
#include "Salsa20.hpp"
#include "Poly1305.hpp"
#include "Packet.hpp"
#include "Peer.hpp"
#include "Switch.hpp"
#include "Node.hpp"

namespace ZeroTier {

Cluster::Cluster(const RuntimeEnvironment *renv,uint16_t id,DistanceAlgorithm da,int32_t x,int32_t y,int32_t z,void (*sendFunction)(void *,uint16_t,const void *,unsigned int),void *arg) :
	RR(renv),
	_sendFunction(sendFunction),
	_arg(arg),
	_x(x),
	_y(y),
	_z(z),
	_da(da),
	_id(id)
{
	uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];

	// Generate master secret by hashing the secret from our Identity key pair
	RR->identity.sha512PrivateKey(_masterSecret);

	// Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
	memcpy(stmp,_masterSecret,sizeof(stmp));
	stmp[0] ^= Utils::hton(id);
	SHA512::hash(stmp,stmp,sizeof(stmp));
	SHA512::hash(stmp,stmp,sizeof(stmp));
	memcpy(_key,stmp,sizeof(_key));
	Utils::burn(stmp,sizeof(stmp));
}

Cluster::~Cluster()
{
	Utils::burn(_masterSecret,sizeof(_masterSecret));
	Utils::burn(_key,sizeof(_key));
}

void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
{
	Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
	{
		// FORMAT: <[16] iv><[8] MAC><... data>
		if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
			return;

		// 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
		char keytmp[32];
		memcpy(keytmp,_key,32);
		for(int i=0;i<8;++i)
			keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
		Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
		Utils::burn(keytmp,sizeof(keytmp));

		// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
		char polykey[ZT_POLY1305_KEY_LEN];
		memset(polykey,0,sizeof(polykey));
		s20.encrypt12(polykey,polykey,sizeof(polykey));

		// Compute 16-byte MAC
		char mac[ZT_POLY1305_MAC_LEN];
		Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);

		// Check first 8 bytes of MAC against 64-bit MAC in stream
		if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
			return;

		// Decrypt!
		dmsg.setSize(len - 24);
		s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
	}

	if (dmsg.size() < 2)
		return;
	const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
	unsigned int ptr = 2;

	_Member &m = _members[fromMemberId];
	Mutex::Lock mlck(m.lock);

	m.lastReceivedFrom = RR->node->now();

	try {
		while (ptr < dmsg.size()) {
			const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
			const unsigned int nextPtr = ptr + mlen;

			int mtype = -1;
			try {
				switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
					default:
						break;

					case STATE_MESSAGE_ALIVE: {
						ptr += 7; // skip version stuff, not used yet
						m.x = dmsg.at<int32_t>(ptr); ptr += 4;
						m.y = dmsg.at<int32_t>(ptr); ptr += 4;
						m.z = dmsg.at<int32_t>(ptr); ptr += 4;
						ptr += 8; // skip local clock, not used
						m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
						ptr += 8; // skip flags, unused
						m.physicalAddressCount = dmsg[ptr++];
						if (m.physicalAddressCount > ZT_CLUSTER_MEMBER_MAX_PHYSICAL_ADDRS)
							m.physicalAddressCount = ZT_CLUSTER_MEMBER_MAX_PHYSICAL_ADDRS;
						for(unsigned int i=0;i<m.physicalAddressCount;++i)
							ptr += m.physicalAddresses[i].deserialize(dmsg,ptr);
						m.lastReceivedAliveAnnouncement = RR->node->now();
					}	break;

					case STATE_MESSAGE_HAVE_PEER: {
						try {
							Identity id;
							ptr += id.deserialize(dmsg,ptr);
							RR->topology->saveIdentity(id);

							{	// Add or update peer affinity entry
								_PeerAffinity pa(id.address(),fromMemberId,RR->node->now());
								Mutex::Lock _l2(_peerAffinities_m);
								std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
								if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
									i->timestamp = pa.timestamp;
								} else {
									_peerAffinities.push_back(pa);
									std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
								}
	 						}
						} catch ( ... ) {
							// ignore invalid identities
						}
					}	break;

					case STATE_MESSAGE_MULTICAST_LIKE: {
						const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
						const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
						const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
						const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
						RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
					}	break;

					case STATE_MESSAGE_COM: {
						// TODO: not used yet
					}	break;

					case STATE_MESSAGE_RELAY: {
						const unsigned int numRemotePeerPaths = dmsg[ptr++];
						InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
						for(unsigned int i=0;i<numRemotePeerPaths;++i)
							ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
						const unsigned int packetLen = dmsg.at<uint16_t>(ptr); ptr += 2;
						const void *packet = (const void *)dmsg.field(ptr,packetLen); ptr += packetLen;

						if (packetLen >= ZT_PROTO_MIN_FRAGMENT_LENGTH) { // ignore anything too short to contain a dest address
							const Address destinationAddress(reinterpret_cast<const char *>(packet) + 8,ZT_ADDRESS_LENGTH);
							SharedPtr<Peer> destinationPeer(RR->topology->getPeer(destinationAddress));
							if (destinationPeer) {
								if (
								    (destinationPeer->send(RR,packet,packetLen,RR->node->now()))&&
								    (numRemotePeerPaths > 0)&&
								    (packetLen >= 18)&&
								    (reinterpret_cast<const unsigned char *>(packet)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
								   ) {
									// If remote peer paths were sent with this relayed packet, we do
									// RENDEZVOUS. It's handled here for cluster-relayed packets since
									// we don't have both Peer records so this is a different path.

									const Address remotePeerAddress(reinterpret_cast<const char *>(packet) + 13,ZT_ADDRESS_LENGTH);

									InetAddress bestDestV4,bestDestV6;
									destinationPeer->getBestActiveAddresses(RR->node->now(),bestDestV4,bestDestV6);
									InetAddress bestRemoteV4,bestRemoteV6;
									for(unsigned int i=0;i<numRemotePeerPaths;++i) {
										if ((bestRemoteV4)&&(bestRemoteV6))
											break;
										switch(remotePeerPaths[i].ss_family) {
											case AF_INET:
												if (!bestRemoteV4)
													bestRemoteV4 = remotePeerPaths[i];
												break;
											case AF_INET6:
												if (!bestRemoteV6)
													bestRemoteV6 = remotePeerPaths[i];
												break;
										}
									}

									Packet rendezvousForDest(destinationAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
									rendezvousForDest.append((uint8_t)0);
									remotePeerAddress.appendTo(rendezvousForDest);

									Buffer<2048> rendezvousForOtherEnd;
									rendezvousForOtherEnd.addSize(2); // leave room for payload size
									rendezvousForOtherEnd.append((uint8_t)STATE_MESSAGE_PROXY_SEND);
									remotePeerAddress.appendTo(rendezvousForOtherEnd);
									rendezvousForOtherEnd.append((uint8_t)Packet::VERB_RENDEZVOUS);
									const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForOtherEnd.size();
									rendezvousForOtherEnd.addSize(2); // space for actual packet payload length
									rendezvousForOtherEnd.append((uint8_t)0); // flags == 0
									destinationAddress.appendTo(rendezvousForOtherEnd);

									bool haveMatch = false;
									if ((bestDestV6)&&(bestRemoteV6)) {
										haveMatch = true;

										rendezvousForDest.append((uint16_t)bestRemoteV6.port());
										rendezvousForDest.append((uint8_t)16);
										rendezvousForDest.append(bestRemoteV6.rawIpData(),16);

										rendezvousForOtherEnd.append((uint16_t)bestDestV6.port());
										rendezvousForOtherEnd.append((uint8_t)16);
										rendezvousForOtherEnd.append(bestDestV6.rawIpData(),16);
										rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
									} else if ((bestDestV4)&&(bestRemoteV4)) {
										haveMatch = true;

										rendezvousForDest.append((uint16_t)bestRemoteV4.port());
										rendezvousForDest.append((uint8_t)4);
										rendezvousForDest.append(bestRemoteV4.rawIpData(),4);

										rendezvousForOtherEnd.append((uint16_t)bestDestV4.port());
										rendezvousForOtherEnd.append((uint8_t)4);
										rendezvousForOtherEnd.append(bestDestV4.rawIpData(),4);
										rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
									}

									if (haveMatch) {
										RR->sw->send(rendezvousForDest,true,0);
										rendezvousForOtherEnd.setAt<uint16_t>(0,(uint16_t)(rendezvousForOtherEnd.size() - 2));
										_send(fromMemberId,rendezvousForOtherEnd.data(),rendezvousForOtherEnd.size());
									}
								}
							}
						}
					}	break;

					case STATE_MESSAGE_PROXY_SEND: {
						const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
						const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
						const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
						Packet outp(rcpt,RR->identity.address(),verb);
						outp.append(dmsg.field(ptr,len),len);
						RR->sw->send(outp,true,0);
					}	break;
				}
			} catch ( ... ) {
				TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
				// drop invalids
			}

			ptr = nextPtr;
		}
	} catch ( ... ) {
		TRACE("invalid message (outer loop), discarding");
		// drop invalids
	}
}

void Cluster::replicateHavePeer(const Address &peerAddress)
{
}

void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
{
}

void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
{
}

void Cluster::doPeriodicTasks()
{
	// Go ahead and flush whenever possible right now
	{
		Mutex::Lock _l(_memberIds_m);
		for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
			Mutex::Lock _l2(_members[*mid].lock);
			_flush(*mid);
		}
	}
}

void Cluster::addMember(uint16_t memberId)
{
	Mutex::Lock _l2(_members[memberId].lock);

	Mutex::Lock _l(_memberIds_m);
	_memberIds.push_back(memberId);
	std::sort(_memberIds.begin(),_memberIds.end());

	// Generate this member's message key from the master and its ID
	uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
	memcpy(stmp,_masterSecret,sizeof(stmp));
	stmp[0] ^= Utils::hton(memberId);
	SHA512::hash(stmp,stmp,sizeof(stmp));
	SHA512::hash(stmp,stmp,sizeof(stmp));
	memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
	Utils::burn(stmp,sizeof(stmp));

	// Prepare q
	_members[memberId].q.clear();
	char iv[16];
	Utils::getSecureRandom(iv,16);
	_members[memberId].q.append(iv,16);
	_members[memberId].q.addSize(8); // room for MAC
	_members[memberId].q.append((uint16_t)_id);
}

void Cluster::_send(uint16_t memberId,const void *msg,unsigned int len)
{
	_Member &m = _members[memberId];
	// assumes m.lock is locked!
	for(;;) {
		if ((m.q.size() + len) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
			_flush(memberId);
		else {
			m.q.append(msg,len);
			break;
		}
	}
}

void Cluster::_flush(uint16_t memberId)
{
	_Member &m = _members[memberId];
	// assumes m.lock is locked!
	if (m.q.size() > 26) { // 16-byte IV + 8-byte MAC + 2-byte cluster member ID (latter two bytes are inside crypto envelope)
		// Create key from member's key and IV
		char keytmp[32];
		memcpy(keytmp,m.key,32);
		for(int i=0;i<8;++i)
			keytmp[i] ^= m.q[i];
		Salsa20 s20(keytmp,256,m.q.field(8,8));
		Utils::burn(keytmp,sizeof(keytmp));

		// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
		char polykey[ZT_POLY1305_KEY_LEN];
		memset(polykey,0,sizeof(polykey));
		s20.encrypt12(polykey,polykey,sizeof(polykey));

		// Encrypt m.q in place
		s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);

		// Add MAC for authentication (encrypt-then-MAC)
		char mac[ZT_POLY1305_MAC_LEN];
		Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
		memcpy(m.q.field(16,8),mac,8);

		// Send!
		_sendFunction(_arg,memberId,m.q.data(),m.q.size());

		// Prepare for more
		m.q.clear();
		char iv[16];
		Utils::getSecureRandom(iv,16);
		m.q.append(iv,16);
		m.q.addSize(8); // room for MAC
		m.q.append((uint16_t)_id);
	}
}

} // namespace ZeroTier

#endif // ZT_ENABLE_CLUSTER