summaryrefslogtreecommitdiff
path: root/node/Cluster.cpp
blob: 619033077112dc8f86c2a0b25c51de909bf9332b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2016  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifdef ZT_ENABLE_CLUSTER

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <map>
#include <algorithm>
#include <set>
#include <utility>
#include <list>
#include <stdexcept>

#include "../version.h"

#include "Cluster.hpp"
#include "RuntimeEnvironment.hpp"
#include "MulticastGroup.hpp"
#include "CertificateOfMembership.hpp"
#include "Salsa20.hpp"
#include "Poly1305.hpp"
#include "Identity.hpp"
#include "Topology.hpp"
#include "Packet.hpp"
#include "Switch.hpp"
#include "Node.hpp"
#include "Array.hpp"

namespace ZeroTier {

static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
	throw()
{
	double dx = ((double)x2 - (double)x1);
	double dy = ((double)y2 - (double)y1);
	double dz = ((double)z2 - (double)z1);
	return sqrt((dx * dx) + (dy * dy) + (dz * dz));
}

// An entry in _ClusterSendQueue
struct _ClusterSendQueueEntry
{
	uint64_t timestamp;
	Address fromPeerAddress;
	Address toPeerAddress;
	// if we ever support larger transport MTUs this must be increased
	unsigned char data[ZT_CLUSTER_SEND_QUEUE_DATA_MAX];
	unsigned int len;
	bool unite;
};

// A multi-index map with entry memory pooling -- this allows our queue to
// be O(log(N)) and is complex enough that it makes the code a lot cleaner
// to break it out from Cluster.
class _ClusterSendQueue
{
public:
	_ClusterSendQueue() :
		_poolCount(0) {}
	~_ClusterSendQueue() {} // memory is automatically freed when _chunks is destroyed

	inline void enqueue(uint64_t now,const Address &from,const Address &to,const void *data,unsigned int len,bool unite)
	{
		if (len > ZT_CLUSTER_SEND_QUEUE_DATA_MAX)
			return;

		Mutex::Lock _l(_lock);

		// Delete oldest queue entry for this sender if this enqueue() would take them over the per-sender limit
		{
			std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(from,(_ClusterSendQueueEntry *)0)));
			std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator oldest(qi);
			unsigned long countForSender = 0;
			while ((qi != _bySrc.end())&&(qi->first == from)) {
				if (qi->second->timestamp < oldest->second->timestamp)
					oldest = qi;
				++countForSender;
				++qi;
			}
			if (countForSender >= ZT_CLUSTER_MAX_QUEUE_PER_SENDER) {
				_byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(oldest->second->toPeerAddress,oldest->second));
				_pool[_poolCount++] = oldest->second;
				_bySrc.erase(oldest);
			}
		}

		_ClusterSendQueueEntry *e;
		if (_poolCount > 0) {
			e = _pool[--_poolCount];
		} else {
			if (_chunks.size() >= ZT_CLUSTER_MAX_QUEUE_CHUNKS)
				return; // queue is totally full!
			_chunks.push_back(Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE>());
			e = &(_chunks.back().data[0]);
			for(unsigned int i=1;i<ZT_CLUSTER_QUEUE_CHUNK_SIZE;++i)
				_pool[_poolCount++] = &(_chunks.back().data[i]);
		}

		e->timestamp = now;
		e->fromPeerAddress = from;
		e->toPeerAddress = to;
		memcpy(e->data,data,len);
		e->len = len;
		e->unite = unite;

		_bySrc.insert(std::pair<Address,_ClusterSendQueueEntry *>(from,e));
		_byDest.insert(std::pair<Address,_ClusterSendQueueEntry *>(to,e));
	}

	inline void expire(uint64_t now)
	{
		Mutex::Lock _l(_lock);
		for(std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.begin());qi!=_bySrc.end();) {
			if ((now - qi->second->timestamp) > ZT_CLUSTER_QUEUE_EXPIRATION) {
				_byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->toPeerAddress,qi->second));
				_pool[_poolCount++] = qi->second;
				_bySrc.erase(qi++);
			} else ++qi;
		}
	}

	/**
	 * Get and dequeue entries for a given destination address
	 *
	 * After use these entries must be returned with returnToPool()!
	 *
	 * @param dest Destination address
	 * @param results Array to fill with results
	 * @param maxResults Size of results[] in pointers
	 * @return Number of actual results returned
	 */
	inline unsigned int getByDest(const Address &dest,_ClusterSendQueueEntry **results,unsigned int maxResults)
	{
		unsigned int count = 0;
		Mutex::Lock _l(_lock);
		std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_byDest.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(dest,(_ClusterSendQueueEntry *)0)));
		while ((qi != _byDest.end())&&(qi->first == dest)) {
			_bySrc.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->fromPeerAddress,qi->second));
			results[count++] = qi->second;
			if (count == maxResults)
				break;
			_byDest.erase(qi++);
		}
		return count;
	}

	/**
	 * Return entries to pool after use
	 *
	 * @param entries Array of entries
	 * @param count Number of entries
	 */
	inline void returnToPool(_ClusterSendQueueEntry **entries,unsigned int count)
	{
		Mutex::Lock _l(_lock);
		for(unsigned int i=0;i<count;++i)
			_pool[_poolCount++] = entries[i];
	}

private:
	std::list< Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE> > _chunks;
	_ClusterSendQueueEntry *_pool[ZT_CLUSTER_QUEUE_CHUNK_SIZE * ZT_CLUSTER_MAX_QUEUE_CHUNKS];
	unsigned long _poolCount;
	std::set< std::pair<Address,_ClusterSendQueueEntry *> > _bySrc;
	std::set< std::pair<Address,_ClusterSendQueueEntry *> > _byDest;
	Mutex _lock;
};

Cluster::Cluster(
	const RuntimeEnvironment *renv,
	uint16_t id,
	const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
	int32_t x,
	int32_t y,
	int32_t z,
	void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
	void *sendFunctionArg,
	int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
	void *addressToLocationFunctionArg) :
	RR(renv),
	_sendQueue(new _ClusterSendQueue()),
	_sendFunction(sendFunction),
	_sendFunctionArg(sendFunctionArg),
	_addressToLocationFunction(addressToLocationFunction),
	_addressToLocationFunctionArg(addressToLocationFunctionArg),
	_x(x),
	_y(y),
	_z(z),
	_id(id),
	_zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
	_members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
	_lastFlushed(0),
	_lastCleanedRemotePeers(0),
	_lastCleanedQueue(0)
{
	uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];

	// Generate master secret by hashing the secret from our Identity key pair
	RR->identity.sha512PrivateKey(_masterSecret);

	// Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
	memcpy(stmp,_masterSecret,sizeof(stmp));
	stmp[0] ^= Utils::hton(id);
	SHA512::hash(stmp,stmp,sizeof(stmp));
	SHA512::hash(stmp,stmp,sizeof(stmp));
	memcpy(_key,stmp,sizeof(_key));
	Utils::burn(stmp,sizeof(stmp));
}

Cluster::~Cluster()
{
	Utils::burn(_masterSecret,sizeof(_masterSecret));
	Utils::burn(_key,sizeof(_key));
	delete [] _members;
	delete _sendQueue;
}

void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
{
	Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
	{
		// FORMAT: <[16] iv><[8] MAC><... data>
		if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
			return;

		// 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
		char keytmp[32];
		memcpy(keytmp,_key,32);
		for(int i=0;i<8;++i)
			keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
		Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
		Utils::burn(keytmp,sizeof(keytmp));

		// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
		char polykey[ZT_POLY1305_KEY_LEN];
		memset(polykey,0,sizeof(polykey));
		s20.encrypt12(polykey,polykey,sizeof(polykey));

		// Compute 16-byte MAC
		char mac[ZT_POLY1305_MAC_LEN];
		Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);

		// Check first 8 bytes of MAC against 64-bit MAC in stream
		if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
			return;

		// Decrypt!
		dmsg.setSize(len - 24);
		s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
	}

	if (dmsg.size() < 4)
		return;
	const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
	unsigned int ptr = 2;
	if (fromMemberId == _id) // sanity check: we don't talk to ourselves
		return;
	const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
	ptr += 2;
	if (toMemberId != _id) // sanity check: message not for us?
		return;

	{	// make sure sender is actually considered a member
		Mutex::Lock _l3(_memberIds_m);
		if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
			return;
	}

	try {
		while (ptr < dmsg.size()) {
			const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
			const unsigned int nextPtr = ptr + mlen;
			if (nextPtr > dmsg.size())
				break;

			int mtype = -1;
			try {
				switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
					default:
						break;

					case CLUSTER_MESSAGE_ALIVE: {
						_Member &m = _members[fromMemberId];
						Mutex::Lock mlck(m.lock);
						ptr += 7; // skip version stuff, not used yet
						m.x = dmsg.at<int32_t>(ptr); ptr += 4;
						m.y = dmsg.at<int32_t>(ptr); ptr += 4;
						m.z = dmsg.at<int32_t>(ptr); ptr += 4;
						ptr += 8; // skip local clock, not used
						m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
						m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
						ptr += 8; // skip flags, unused
#ifdef ZT_TRACE
						std::string addrs;
#endif
						unsigned int physicalAddressCount = dmsg[ptr++];
						m.zeroTierPhysicalEndpoints.clear();
						for(unsigned int i=0;i<physicalAddressCount;++i) {
							m.zeroTierPhysicalEndpoints.push_back(InetAddress());
							ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
							if (!(m.zeroTierPhysicalEndpoints.back())) {
								m.zeroTierPhysicalEndpoints.pop_back();
							}
#ifdef ZT_TRACE
							else {
								if (addrs.length() > 0)
									addrs.push_back(',');
								addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
							}
#endif
						}
#ifdef ZT_TRACE
						if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
							TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
						}
#endif
						m.lastReceivedAliveAnnouncement = RR->node->now();
					}	break;

					case CLUSTER_MESSAGE_HAVE_PEER: {
						Identity id;
						ptr += id.deserialize(dmsg,ptr);
						if (id) {
							RR->topology->saveIdentity(id);

							{
								Mutex::Lock _l(_remotePeers_m);
								_remotePeers[std::pair<Address,unsigned int>(id.address(),(unsigned int)fromMemberId)] = RR->node->now();
							}

							_ClusterSendQueueEntry *q[16384]; // 16384 is "tons"
							unsigned int qc = _sendQueue->getByDest(id.address(),q,16384);
							for(unsigned int i=0;i<qc;++i)
								this->sendViaCluster(q[i]->fromPeerAddress,q[i]->toPeerAddress,q[i]->data,q[i]->len,q[i]->unite);
							_sendQueue->returnToPool(q,qc);

							TRACE("[%u] has %s (retried %u queued sends)",(unsigned int)fromMemberId,id.address().toString().c_str(),qc);
						}
					}	break;

					case CLUSTER_MESSAGE_WANT_PEER: {
						const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
						SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
						if ( (peer) && (peer->hasClusterOptimalPath(RR->node->now())) ) {
							Buffer<1024> buf;
							peer->identity().serialize(buf);
							Mutex::Lock _l2(_members[fromMemberId].lock);
							_send(fromMemberId,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
						}
					}	break;

					case CLUSTER_MESSAGE_REMOTE_PACKET: {
						const unsigned int plen = dmsg.at<uint16_t>(ptr); ptr += 2;
						if (plen) {
							Packet remotep(dmsg.field(ptr,plen),plen); ptr += plen;
							//TRACE("remote %s from %s via %u (%u bytes)",Packet::verbString(remotep.verb()),remotep.source().toString().c_str(),fromMemberId,plen);
							switch(remotep.verb()) {
								case Packet::VERB_WHOIS:            _doREMOTE_WHOIS(fromMemberId,remotep); break;
								case Packet::VERB_MULTICAST_GATHER: _doREMOTE_MULTICAST_GATHER(fromMemberId,remotep); break;
								default: break; // ignore things we don't care about across cluster
							}
						}
					}	break;

					case CLUSTER_MESSAGE_PROXY_UNITE: {
						const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
						const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
						const unsigned int numRemotePeerPaths = dmsg[ptr++];
						InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
						for(unsigned int i=0;i<numRemotePeerPaths;++i)
							ptr += remotePeerPaths[i].deserialize(dmsg,ptr);

						TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());

						const uint64_t now = RR->node->now();
						SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
						if ((localPeer)&&(numRemotePeerPaths > 0)) {
							InetAddress bestLocalV4,bestLocalV6;
							localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);

							InetAddress bestRemoteV4,bestRemoteV6;
							for(unsigned int i=0;i<numRemotePeerPaths;++i) {
								if ((bestRemoteV4)&&(bestRemoteV6))
									break;
								switch(remotePeerPaths[i].ss_family) {
									case AF_INET:
										if (!bestRemoteV4)
											bestRemoteV4 = remotePeerPaths[i];
										break;
									case AF_INET6:
										if (!bestRemoteV6)
											bestRemoteV6 = remotePeerPaths[i];
										break;
								}
							}

							Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
							rendezvousForLocal.append((uint8_t)0);
							remotePeerAddress.appendTo(rendezvousForLocal);

							Buffer<2048> rendezvousForRemote;
							remotePeerAddress.appendTo(rendezvousForRemote);
							rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
							rendezvousForRemote.addSize(2); // space for actual packet payload length
							rendezvousForRemote.append((uint8_t)0); // flags == 0
							localPeerAddress.appendTo(rendezvousForRemote);

							bool haveMatch = false;
							if ((bestLocalV6)&&(bestRemoteV6)) {
								haveMatch = true;

								rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
								rendezvousForLocal.append((uint8_t)16);
								rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);

								rendezvousForRemote.append((uint16_t)bestLocalV6.port());
								rendezvousForRemote.append((uint8_t)16);
								rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
								rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 16));
							} else if ((bestLocalV4)&&(bestRemoteV4)) {
								haveMatch = true;

								rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
								rendezvousForLocal.append((uint8_t)4);
								rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);

								rendezvousForRemote.append((uint16_t)bestLocalV4.port());
								rendezvousForRemote.append((uint8_t)4);
								rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
								rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 4));
							}

							if (haveMatch) {
								{
									Mutex::Lock _l2(_members[fromMemberId].lock);
									_send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
								}
								RR->sw->send(rendezvousForLocal,true,0);
							}
						}
					}	break;

					case CLUSTER_MESSAGE_PROXY_SEND: {
						const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
						const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
						const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
						Packet outp(rcpt,RR->identity.address(),verb);
						outp.append(dmsg.field(ptr,len),len); ptr += len;
						RR->sw->send(outp,true,0);
						//TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
					}	break;
				}
			} catch ( ... ) {
				TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
				// drop invalids
			}

			ptr = nextPtr;
		}
	} catch ( ... ) {
		TRACE("invalid message (outer loop), discarding");
		// drop invalids
	}
}

void Cluster::broadcastHavePeer(const Identity &id)
{
	Buffer<1024> buf;
	id.serialize(buf);
	Mutex::Lock _l(_memberIds_m);
	for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
		Mutex::Lock _l2(_members[*mid].lock);
		_send(*mid,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
	}
}

void Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
{
	if (len > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check
		return;

	const uint64_t now = RR->node->now();

	uint64_t mostRecentTs = 0;
	unsigned int mostRecentMemberId = 0xffffffff;
	{
		Mutex::Lock _l2(_remotePeers_m);
		std::map< std::pair<Address,unsigned int>,uint64_t >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
		for(;;) {
			if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
				break;
			else if (rpe->second > mostRecentTs) {
				mostRecentTs = rpe->second;
				mostRecentMemberId = rpe->first.second;
			}
			++rpe;
		}
	}

	const uint64_t age = now - mostRecentTs;
	if (age >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
		const bool enqueueAndWait = ((age >= ZT_PEER_ACTIVITY_TIMEOUT)||(mostRecentMemberId > 0xffff));

		// Poll everyone with WANT_PEER if the age of our most recent entry is
		// approaching expiration (or has expired, or does not exist).
		char tmp[ZT_ADDRESS_LENGTH];
		toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
		{
			Mutex::Lock _l(_memberIds_m);
			for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
				Mutex::Lock _l2(_members[*mid].lock);
				_send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
			}
		}

		// If there isn't a good place to send via, then enqueue this for retrying
		// later and return after having broadcasted a WANT_PEER.
		if (enqueueAndWait) {
			TRACE("sendViaCluster %s -> %s enqueueing to wait for HAVE_PEER",fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
			_sendQueue->enqueue(now,fromPeerAddress,toPeerAddress,data,len,unite);
			return;
		}
	}

	Buffer<1024> buf;
	if (unite) {
		InetAddress v4,v6;
		if (fromPeerAddress) {
			SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
			if (fromPeer)
				fromPeer->getBestActiveAddresses(now,v4,v6);
		}
		uint8_t addrCount = 0;
		if (v4)
			++addrCount;
		if (v6)
			++addrCount;
		if (addrCount) {
			toPeerAddress.appendTo(buf);
			fromPeerAddress.appendTo(buf);
			buf.append(addrCount);
			if (v4)
				v4.serialize(buf);
			if (v6)
				v6.serialize(buf);
		}
	}

	{
		Mutex::Lock _l2(_members[mostRecentMemberId].lock);
		if (buf.size() > 0)
			_send(mostRecentMemberId,CLUSTER_MESSAGE_PROXY_UNITE,buf.data(),buf.size());

		for(std::vector<InetAddress>::const_iterator i1(_zeroTierPhysicalEndpoints.begin());i1!=_zeroTierPhysicalEndpoints.end();++i1) {
			for(std::vector<InetAddress>::const_iterator i2(_members[mostRecentMemberId].zeroTierPhysicalEndpoints.begin());i2!=_members[mostRecentMemberId].zeroTierPhysicalEndpoints.end();++i2) {
				if (i1->ss_family == i2->ss_family) {
					TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u (%s->%s)",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId,i1->toString().c_str(),i2->toString().c_str());
					RR->node->putPacket(*i1,*i2,data,len);
					return;
				}
			}
		}

		TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u failed: no common endpoints with the same address family!",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId);
		return;
	}
}

void Cluster::sendDistributedQuery(const Packet &pkt)
{
	Buffer<4096> buf;
	buf.append((uint16_t)pkt.size());
	buf.append(pkt.data(),pkt.size());
	Mutex::Lock _l(_memberIds_m);
	for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
		Mutex::Lock _l2(_members[*mid].lock);
		_send(*mid,CLUSTER_MESSAGE_REMOTE_PACKET,buf.data(),buf.size());
	}
}

void Cluster::doPeriodicTasks()
{
	const uint64_t now = RR->node->now();

	if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
		_lastFlushed = now;

		Mutex::Lock _l(_memberIds_m);
		for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
			Mutex::Lock _l2(_members[*mid].lock);

			if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
				_members[*mid].lastAnnouncedAliveTo = now;

				Buffer<2048> alive;
				alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
				alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
				alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
				alive.append((uint8_t)ZT_PROTO_VERSION);
				if (_addressToLocationFunction) {
					alive.append((int32_t)_x);
					alive.append((int32_t)_y);
					alive.append((int32_t)_z);
				} else {
					alive.append((int32_t)0);
					alive.append((int32_t)0);
					alive.append((int32_t)0);
				}
				alive.append((uint64_t)now);
				alive.append((uint64_t)0); // TODO: compute and send load average
				alive.append((uint64_t)RR->topology->countActive(now));
				alive.append((uint64_t)0); // unused/reserved flags
				alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
				for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
					pe->serialize(alive);
				_send(*mid,CLUSTER_MESSAGE_ALIVE,alive.data(),alive.size());
			}

			_flush(*mid);
		}
	}

	if ((now - _lastCleanedRemotePeers) >= (ZT_PEER_ACTIVITY_TIMEOUT * 2)) {
		_lastCleanedRemotePeers = now;

		Mutex::Lock _l(_remotePeers_m);
		for(std::map< std::pair<Address,unsigned int>,uint64_t >::iterator rp(_remotePeers.begin());rp!=_remotePeers.end();) {
			if ((now - rp->second) >= ZT_PEER_ACTIVITY_TIMEOUT)
				_remotePeers.erase(rp++);
			else ++rp;
		}
	}

	if ((now - _lastCleanedQueue) >= ZT_CLUSTER_QUEUE_EXPIRATION) {
		_lastCleanedQueue = now;
		_sendQueue->expire(now);
	}
}

void Cluster::addMember(uint16_t memberId)
{
	if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
		return;

	Mutex::Lock _l2(_members[memberId].lock);

	{
		Mutex::Lock _l(_memberIds_m);
		if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
			return;
		_memberIds.push_back(memberId);
		std::sort(_memberIds.begin(),_memberIds.end());
	}

	_members[memberId].clear();

	// Generate this member's message key from the master and its ID
	uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
	memcpy(stmp,_masterSecret,sizeof(stmp));
	stmp[0] ^= Utils::hton(memberId);
	SHA512::hash(stmp,stmp,sizeof(stmp));
	SHA512::hash(stmp,stmp,sizeof(stmp));
	memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
	Utils::burn(stmp,sizeof(stmp));

	// Prepare q
	_members[memberId].q.clear();
	char iv[16];
	Utils::getSecureRandom(iv,16);
	_members[memberId].q.append(iv,16);
	_members[memberId].q.addSize(8); // room for MAC
	_members[memberId].q.append((uint16_t)_id);
	_members[memberId].q.append((uint16_t)memberId);
}

void Cluster::removeMember(uint16_t memberId)
{
	Mutex::Lock _l(_memberIds_m);
	std::vector<uint16_t> newMemberIds;
	for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
		if (*mid != memberId)
			newMemberIds.push_back(*mid);
	}
	_memberIds = newMemberIds;
}

bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
{
	if (_addressToLocationFunction) {
		// Pick based on location if it can be determined
		int px = 0,py = 0,pz = 0;
		if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
			TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
			return false;
		}

		// Find member closest to this peer
		const uint64_t now = RR->node->now();
		std::vector<InetAddress> best;
		const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
		double bestDistance = (offload ? 2147483648.0 : currentDistance);
		unsigned int bestMember = _id;
		{
			Mutex::Lock _l(_memberIds_m);
			for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
				_Member &m = _members[*mid];
				Mutex::Lock _ml(m.lock);

				// Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
				if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
					const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
					if (mdist < bestDistance) {
						bestDistance = mdist;
						bestMember = *mid;
						best = m.zeroTierPhysicalEndpoints;
					}
				}
			}
		}

		// Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
		for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
			if (a->ss_family == peerPhysicalAddress.ss_family) {
				TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
				redirectTo = *a;
				return true;
			}
		}
		TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
		return false;
	} else {
		// TODO: pick based on load if no location info?
		return false;
	}
}

void Cluster::status(ZT_ClusterStatus &status) const
{
	const uint64_t now = RR->node->now();
	memset(&status,0,sizeof(ZT_ClusterStatus));

	status.myId = _id;

	{
		ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
		s->id = _id;
		s->alive = 1;
		s->x = _x;
		s->y = _y;
		s->z = _z;
		s->load = 0; // TODO
		s->peers = RR->topology->countActive(now);
		for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
			if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
				break;
			memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
		}
	}

	{
		Mutex::Lock _l1(_memberIds_m);
		for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
			if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
				break;

			_Member &m = _members[*mid];
			Mutex::Lock ml(m.lock);

			ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
			s->id = *mid;
			s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
			s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
			s->x = m.x;
			s->y = m.y;
			s->z = m.z;
			s->load = m.load;
			s->peers = m.peers;
			for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
				if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
					break;
				memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
			}
		}
	}
}

void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
{
	if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
		return;
	_Member &m = _members[memberId];
	// assumes m.lock is locked!
	if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
		_flush(memberId);
	m.q.append((uint16_t)(len + 1));
	m.q.append((uint8_t)type);
	m.q.append(msg,len);
}

void Cluster::_flush(uint16_t memberId)
{
	_Member &m = _members[memberId];
	// assumes m.lock is locked!
	if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
		// Create key from member's key and IV
		char keytmp[32];
		memcpy(keytmp,m.key,32);
		for(int i=0;i<8;++i)
			keytmp[i] ^= m.q[i];
		Salsa20 s20(keytmp,256,m.q.field(8,8));
		Utils::burn(keytmp,sizeof(keytmp));

		// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
		char polykey[ZT_POLY1305_KEY_LEN];
		memset(polykey,0,sizeof(polykey));
		s20.encrypt12(polykey,polykey,sizeof(polykey));

		// Encrypt m.q in place
		s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);

		// Add MAC for authentication (encrypt-then-MAC)
		char mac[ZT_POLY1305_MAC_LEN];
		Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
		memcpy(m.q.field(16,8),mac,8);

		// Send!
		_sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());

		// Prepare for more
		m.q.clear();
		char iv[16];
		Utils::getSecureRandom(iv,16);
		m.q.append(iv,16);
		m.q.addSize(8); // room for MAC
		m.q.append((uint16_t)_id); // from member ID
		m.q.append((uint16_t)memberId); // to member ID
	}
}

void Cluster::_doREMOTE_WHOIS(uint64_t fromMemberId,const Packet &remotep)
{
	if (remotep.payloadLength() >= ZT_ADDRESS_LENGTH) {
		Identity queried(RR->topology->getIdentity(Address(remotep.payload(),ZT_ADDRESS_LENGTH)));
		if (queried) {
			Buffer<1024> routp;
			remotep.source().appendTo(routp);
			routp.append((uint8_t)Packet::VERB_OK);
			routp.addSize(2); // space for length
			routp.append((uint8_t)Packet::VERB_WHOIS);
			routp.append(remotep.packetId());
			queried.serialize(routp);
			routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));

			TRACE("responding to remote WHOIS from %s @ %u with identity of %s",remotep.source().toString().c_str(),(unsigned int)fromMemberId,queried.address().toString().c_str());
			Mutex::Lock _l2(_members[fromMemberId].lock);
			_send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
		}
	}
}

void Cluster::_doREMOTE_MULTICAST_GATHER(uint64_t fromMemberId,const Packet &remotep)
{
	const uint64_t nwid = remotep.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
	const MulticastGroup mg(MAC(remotep.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
	unsigned int gatherLimit = remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
	const Address remotePeerAddress(remotep.source());

	if (gatherLimit) {
		Buffer<ZT_PROTO_MAX_PACKET_LENGTH> routp;
		remotePeerAddress.appendTo(routp);
		routp.append((uint8_t)Packet::VERB_OK);
		routp.addSize(2); // space for length
		routp.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
		routp.append(remotep.packetId());
		routp.append(nwid);
		mg.mac().appendTo(routp);
		routp.append((uint32_t)mg.adi());

		if (gatherLimit > ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5))
			gatherLimit = ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5);
		if (RR->mc->gather(remotePeerAddress,nwid,mg,routp,gatherLimit)) {
			routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));

			TRACE("responding to remote MULTICAST_GATHER from %s @ %u with %u bytes",remotePeerAddress.toString().c_str(),(unsigned int)fromMemberId,routp.size());
			Mutex::Lock _l2(_members[fromMemberId].lock);
			_send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
		}
	}
}

} // namespace ZeroTier

#endif // ZT_ENABLE_CLUSTER