1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
|
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2018 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <stdint.h>
#include "../version.h"
#include "Constants.hpp"
#include "SharedPtr.hpp"
#include "Node.hpp"
#include "RuntimeEnvironment.hpp"
#include "NetworkController.hpp"
#include "Switch.hpp"
#include "Multicaster.hpp"
#include "Topology.hpp"
#include "Buffer.hpp"
#include "Packet.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "SelfAwareness.hpp"
#include "Network.hpp"
#include "Trace.hpp"
namespace ZeroTier {
/****************************************************************************/
/* Public Node interface (C++, exposed via CAPI bindings) */
/****************************************************************************/
Node::Node(void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) :
_RR(this),
RR(&_RR),
_uPtr(uptr),
_networks(8),
_now(now),
_lastPingCheck(0),
_lastHousekeepingRun(0),
_lastMemoizedTraceSettings(0)
{
if (callbacks->version != 0)
throw ZT_EXCEPTION_INVALID_ARGUMENT;
ZT_FAST_MEMCPY(&_cb,callbacks,sizeof(ZT_Node_Callbacks));
// Initialize non-cryptographic PRNG from a good random source
Utils::getSecureRandom((void *)_prngState,sizeof(_prngState));
_online = false;
memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr));
memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo));
memset(_lastIdentityVerification,0,sizeof(_lastIdentityVerification));
uint64_t idtmp[2];
idtmp[0] = 0; idtmp[1] = 0;
char tmp[2048];
int n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,tmp,sizeof(tmp) - 1);
if (n > 0) {
tmp[n] = (char)0;
if (RR->identity.fromString(tmp)) {
RR->identity.toString(false,RR->publicIdentityStr);
RR->identity.toString(true,RR->secretIdentityStr);
} else {
n = -1;
}
}
if (n <= 0) {
RR->identity.generate();
RR->identity.toString(false,RR->publicIdentityStr);
RR->identity.toString(true,RR->secretIdentityStr);
idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,RR->secretIdentityStr,(unsigned int)strlen(RR->secretIdentityStr));
stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
} else {
idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,tmp,sizeof(tmp) - 1);
if ((n > 0)&&(n < (int)sizeof(RR->publicIdentityStr))&&(n < (int)sizeof(tmp))) {
if (memcmp(tmp,RR->publicIdentityStr,n))
stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
}
}
char *m = (char *)0;
try {
const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0);
const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0);
const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0);
const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0);
const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0);
m = reinterpret_cast<char *>(::malloc(16 + ts + sws + mcs + topologys + sas));
if (!m)
throw std::bad_alloc();
RR->rtmem = m;
while (((uintptr_t)m & 0xf) != 0) ++m;
RR->t = new (m) Trace(RR);
m += ts;
RR->sw = new (m) Switch(RR);
m += sws;
RR->mc = new (m) Multicaster(RR);
m += mcs;
RR->topology = new (m) Topology(RR,tptr);
m += topologys;
RR->sa = new (m) SelfAwareness(RR);
} catch ( ... ) {
if (RR->sa) RR->sa->~SelfAwareness();
if (RR->topology) RR->topology->~Topology();
if (RR->mc) RR->mc->~Multicaster();
if (RR->sw) RR->sw->~Switch();
if (RR->t) RR->t->~Trace();
::free(m);
throw;
}
postEvent(tptr,ZT_EVENT_UP);
}
Node::~Node()
{
{
Mutex::Lock _l(_networks_m);
_networks.clear(); // destroy all networks before shutdown
}
if (RR->sa) RR->sa->~SelfAwareness();
if (RR->topology) RR->topology->~Topology();
if (RR->mc) RR->mc->~Multicaster();
if (RR->sw) RR->sw->~Switch();
if (RR->t) RR->t->~Trace();
::free(RR->rtmem);
}
ZT_ResultCode Node::processWirePacket(
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
RR->sw->onRemotePacket(tptr,localSocket,*(reinterpret_cast<const InetAddress *>(remoteAddress)),packetData,packetLength);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::processVirtualNetworkFrame(
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
RR->sw->onLocalEthernet(tptr,nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength);
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
// Closure used to ping upstream and active/online peers
class _PingPeersThatNeedPing
{
public:
_PingPeersThatNeedPing(const RuntimeEnvironment *renv,void *tPtr,Hashtable< Address,std::vector<InetAddress> > &alwaysContact,int64_t now) :
RR(renv),
_tPtr(tPtr),
_alwaysContact(alwaysContact),
_now(now),
_bestCurrentUpstream(RR->topology->getUpstreamPeer())
{
}
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
const std::vector<InetAddress> *const alwaysContactEndpoints = _alwaysContact.get(p->address());
if (alwaysContactEndpoints) {
const unsigned int sent = p->doPingAndKeepalive(_tPtr,_now);
bool contacted = (sent != 0);
if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent
for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
if (addr.ss_family == AF_INET) {
p->sendHELLO(_tPtr,-1,addr,_now);
contacted = true;
break;
}
}
}
if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent
for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
if (addr.ss_family == AF_INET6) {
p->sendHELLO(_tPtr,-1,addr,_now);
contacted = true;
break;
}
}
}
if ((!contacted)&&(_bestCurrentUpstream)) {
const SharedPtr<Path> up(_bestCurrentUpstream->getAppropriatePath(_now,true));
if (up)
p->sendHELLO(_tPtr,up->localSocket(),up->address(),_now);
}
_alwaysContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain
} else if (p->isActive(_now)) {
p->doPingAndKeepalive(_tPtr,_now);
}
}
private:
const RuntimeEnvironment *RR;
void *_tPtr;
Hashtable< Address,std::vector<InetAddress> > &_alwaysContact;
const int64_t _now;
const SharedPtr<Peer> _bestCurrentUpstream;
};
ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
Mutex::Lock bl(_backgroundTasksLock);
unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL;
const int64_t timeSinceLastPingCheck = now - _lastPingCheck;
if (timeSinceLastPingCheck >= ZT_PING_CHECK_INVERVAL) {
try {
_lastPingCheck = now;
// Get designated VL1 upstreams
Hashtable< Address,std::vector<InetAddress> > alwaysContact;
RR->topology->getUpstreamsToContact(alwaysContact);
// Check last receive time on designated upstreams to see if we seem to be online
int64_t lastReceivedFromUpstream = 0;
{
Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
Address *upstreamAddress = (Address *)0;
std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
while (i.next(upstreamAddress,upstreamStableEndpoints)) {
SharedPtr<Peer> p(RR->topology->getPeerNoCache(*upstreamAddress));
if (p)
lastReceivedFromUpstream = std::max(p->lastReceive(),lastReceivedFromUpstream);
}
}
// Get peers we should stay connected to according to network configs
// Also get networks and whether they need config so we only have to do one pass over networks
std::vector< std::pair< SharedPtr<Network>,bool > > networkConfigNeeded;
{
Mutex::Lock l(_networks_m);
Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
uint64_t *nwid = (uint64_t *)0;
SharedPtr<Network> *network = (SharedPtr<Network> *)0;
while (i.next(nwid,network)) {
(*network)->config().alwaysContactAddresses(alwaysContact);
networkConfigNeeded.push_back( std::pair< SharedPtr<Network>,bool >(*network,(((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!(*network)->hasConfig()))) );
}
}
// Ping active peers, upstreams, and others that we should always contact
_PingPeersThatNeedPing pfunc(RR,tptr,alwaysContact,now);
RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc);
// Run WHOIS to create Peer for alwaysContact addresses that could not be contacted
{
Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
Address *upstreamAddress = (Address *)0;
std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
while (i.next(upstreamAddress,upstreamStableEndpoints))
RR->sw->requestWhois(tptr,now,*upstreamAddress);
}
// Refresh network config or broadcast network updates to members as needed
for(std::vector< std::pair< SharedPtr<Network>,bool > >::const_iterator n(networkConfigNeeded.begin());n!=networkConfigNeeded.end();++n) {
if (n->second)
n->first->requestConfiguration(tptr);
n->first->sendUpdatesToMembers(tptr);
}
// Update online status, post status change as event
const bool oldOnline = _online;
_online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amUpstream()));
if (oldOnline != _online)
postEvent(tptr,_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
} else {
timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;
}
if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) {
_lastMemoizedTraceSettings = now;
RR->t->updateMemoizedSettings();
}
if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
_lastHousekeepingRun = now;
try {
RR->topology->doPeriodicTasks(tptr,now);
RR->sa->clean(now);
RR->mc->clean(now);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
try {
*nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(tptr,now)),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::join(uint64_t nwid,void *uptr,void *tptr)
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network> &nw = _networks[nwid];
if (!nw)
nw = SharedPtr<Network>(new Network(RR,tptr,nwid,uptr,(const NetworkConfig *)0));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::leave(uint64_t nwid,void **uptr,void *tptr)
{
ZT_VirtualNetworkConfig ctmp;
void **nUserPtr = (void **)0;
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network> *nw = _networks.get(nwid);
RR->sw->removeNetworkQoSControlBlock(nwid);
if (!nw)
return ZT_RESULT_OK;
if (uptr)
*uptr = (*nw)->userPtr();
(*nw)->externalConfig(&ctmp);
(*nw)->destroy();
nUserPtr = (*nw)->userPtr();
}
if (nUserPtr)
RR->node->configureVirtualNetworkPort(tptr,nwid,nUserPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
{
Mutex::Lock _l(_networks_m);
_networks.erase(nwid);
}
uint64_t tmp[2];
tmp[0] = nwid; tmp[1] = 0;
RR->node->stateObjectDelete(tptr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastSubscribe(tptr,MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::orbit(void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
{
RR->topology->addMoon(tptr,moonWorldId,Address(moonSeed));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::deorbit(void *tptr,uint64_t moonWorldId)
{
RR->topology->removeMoon(tptr,moonWorldId);
return ZT_RESULT_OK;
}
uint64_t Node::address() const
{
return RR->identity.address().toInt();
}
void Node::status(ZT_NodeStatus *status) const
{
status->address = RR->identity.address().toInt();
status->publicIdentity = RR->publicIdentityStr;
status->secretIdentity = RR->secretIdentityStr;
status->online = _online ? 1 : 0;
}
ZT_PeerList *Node::peers() const
{
std::vector< std::pair< Address,SharedPtr<Peer> > > peers(RR->topology->allPeers());
std::sort(peers.begin(),peers.end());
char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));
if (!buf)
return (ZT_PeerList *)0;
ZT_PeerList *pl = (ZT_PeerList *)buf;
pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList));
pl->peerCount = 0;
for(std::vector< std::pair< Address,SharedPtr<Peer> > >::iterator pi(peers.begin());pi!=peers.end();++pi) {
ZT_Peer *p = &(pl->peers[pl->peerCount++]);
p->address = pi->second->address().toInt();
p->hadAggregateLink = 0;
if (pi->second->remoteVersionKnown()) {
p->versionMajor = pi->second->remoteVersionMajor();
p->versionMinor = pi->second->remoteVersionMinor();
p->versionRev = pi->second->remoteVersionRevision();
} else {
p->versionMajor = -1;
p->versionMinor = -1;
p->versionRev = -1;
}
p->latency = pi->second->latency(_now);
if (p->latency >= 0xffff)
p->latency = -1;
p->role = RR->topology->role(pi->second->identity().address());
std::vector< SharedPtr<Path> > paths(pi->second->paths(_now));
SharedPtr<Path> bestp(pi->second->getAppropriatePath(_now,false));
p->hadAggregateLink |= pi->second->hasAggregateLink();
p->pathCount = 0;
for(std::vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) {
ZT_FAST_MEMCPY(&(p->paths[p->pathCount].address),&((*path)->address()),sizeof(struct sockaddr_storage));
p->paths[p->pathCount].lastSend = (*path)->lastOut();
p->paths[p->pathCount].lastReceive = (*path)->lastIn();
p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
p->paths[p->pathCount].expired = 0;
p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0;
p->paths[p->pathCount].latency = (*path)->latency();
p->paths[p->pathCount].packetDelayVariance = (*path)->packetDelayVariance();
p->paths[p->pathCount].throughputDisturbCoeff = (*path)->throughputDisturbanceCoefficient();
p->paths[p->pathCount].packetErrorRatio = (*path)->packetErrorRatio();
p->paths[p->pathCount].packetLossRatio = (*path)->packetLossRatio();
p->paths[p->pathCount].stability = (*path)->lastComputedStability();
p->paths[p->pathCount].throughput = (*path)->meanThroughput();
p->paths[p->pathCount].maxThroughput = (*path)->maxLifetimeThroughput();
p->paths[p->pathCount].allocation = (float)(*path)->allocation() / (float)255;
p->paths[p->pathCount].ifname = (*path)->getName();
++p->pathCount;
}
}
return pl;
}
ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
{
Mutex::Lock _l(_networks_m);
const SharedPtr<Network> *nw = _networks.get(nwid);
if (nw) {
ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
(*nw)->externalConfig(nc);
return nc;
}
return (ZT_VirtualNetworkConfig *)0;
}
ZT_VirtualNetworkList *Node::networks() const
{
Mutex::Lock _l(_networks_m);
char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));
if (!buf)
return (ZT_VirtualNetworkList *)0;
ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;
nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
nl->networkCount = 0;
Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(*const_cast< Hashtable< uint64_t,SharedPtr<Network> > *>(&_networks));
uint64_t *k = (uint64_t *)0;
SharedPtr<Network> *v = (SharedPtr<Network> *)0;
while (i.next(k,v))
(*v)->externalConfig(&(nl->networks[nl->networkCount++]));
return nl;
}
void Node::freeQueryResult(void *qr)
{
if (qr)
::free(qr);
}
int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr)
{
if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress *>(addr)))) {
Mutex::Lock _l(_directPaths_m);
if (std::find(_directPaths.begin(),_directPaths.end(),*(reinterpret_cast<const InetAddress *>(addr))) == _directPaths.end()) {
_directPaths.push_back(*(reinterpret_cast<const InetAddress *>(addr)));
return 1;
}
}
return 0;
}
void Node::clearLocalInterfaceAddresses()
{
Mutex::Lock _l(_directPaths_m);
_directPaths.clear();
}
int Node::sendUserMessage(void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
{
try {
if (RR->identity.address().toInt() != dest) {
Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
outp.append(typeId);
outp.append(data,len);
outp.compress();
RR->sw->send(tptr,outp,true);
return 1;
}
} catch ( ... ) {}
return 0;
}
void Node::setNetconfMaster(void *networkControllerInstance)
{
RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
if (networkControllerInstance)
RR->localNetworkController->init(RR->identity,this);
}
/****************************************************************************/
/* Node methods used only within node/ */
/****************************************************************************/
bool Node::shouldUsePathForZeroTierTraffic(void *tPtr,const Address &ztaddr,const int64_t localSocket,const InetAddress &remoteAddress)
{
if (!Path::isAddressValidForPath(remoteAddress))
return false;
if (RR->topology->isProhibitedEndpoint(ztaddr,remoteAddress))
return false;
{
Mutex::Lock _l(_networks_m);
Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
uint64_t *k = (uint64_t *)0;
SharedPtr<Network> *v = (SharedPtr<Network> *)0;
while (i.next(k,v)) {
if ((*v)->hasConfig()) {
for(unsigned int k=0;k<(*v)->config().staticIpCount;++k) {
if ((*v)->config().staticIps[k].containsAddress(remoteAddress))
return false;
}
}
}
}
return ( (_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast<ZT_Node *>(this),_uPtr,tPtr,ztaddr.toInt(),localSocket,reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0) : true);
}
uint64_t Node::prng()
{
// https://en.wikipedia.org/wiki/Xorshift#xorshift.2B
uint64_t x = _prngState[0];
const uint64_t y = _prngState[1];
_prngState[0] = y;
x ^= x << 23;
const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26);
_prngState[1] = z;
return z + y;
}
ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig)
{
RR->topology->setPhysicalPathConfiguration(pathNetwork,pathConfig);
return ZT_RESULT_OK;
}
World Node::planet() const
{
return RR->topology->planet();
}
std::vector<World> Node::moons() const
{
return RR->topology->moons();
}
void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
n->setConfiguration((void *)0,nc,true);
} else {
Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> *dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
try {
if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) {
uint64_t configUpdateId = prng();
if (!configUpdateId) ++configUpdateId;
const unsigned int totalSize = dconf->sizeBytes();
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
if (requestPacketId) {
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
}
const unsigned int sigStart = outp.size();
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
outp.append((uint8_t)0); // no flags
outp.append((uint64_t)configUpdateId);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
C25519::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart));
outp.append((uint8_t)1);
outp.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
outp.append(sig.data,ZT_C25519_SIGNATURE_LEN);
outp.compress();
RR->sw->send((void *)0,outp,true);
chunkIndex += chunkLen;
}
}
delete dconf;
} catch ( ... ) {
delete dconf;
throw;
}
}
}
void Node::ncSendRevocation(const Address &destination,const Revocation &rev)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(rev.networkId()));
if (!n) return;
n->addCredential((void *)0,RR->identity.address(),rev);
} else {
Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00);
outp.append((uint16_t)0);
outp.append((uint16_t)0);
outp.append((uint16_t)1);
rev.serialize(outp);
outp.append((uint16_t)0);
RR->sw->send((void *)0,outp,true);
}
}
void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
switch(errorCode) {
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
n->setNotFound();
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
n->setAccessDenied();
break;
default: break;
}
} else if (requestPacketId) {
Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
switch(errorCode) {
//case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
//case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
default:
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
break;
}
outp.append(nwid);
RR->sw->send((void *)0,outp,true);
} // else we can't send an ERROR() in response to nothing, so discard
}
} // namespace ZeroTier
/****************************************************************************/
/* CAPI bindings */
/****************************************************************************/
extern "C" {
enum ZT_ResultCode ZT_Node_new(ZT_Node **node,void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now)
{
*node = (ZT_Node *)0;
try {
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr,tptr,callbacks,now));
return ZT_RESULT_OK;
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (std::runtime_error &exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node *node)
{
try {
delete (reinterpret_cast<ZeroTier::Node *>(node));
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_processWirePacket(
ZT_Node *node,
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr,now,localSocket,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node *node,
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr,now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr,now,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr,void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid,uptr,tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr,void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid,uptr,tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr,nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_orbit(ZT_Node *node,void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->orbit(tptr,moonWorldId,moonSeed);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_deorbit(ZT_Node *node,void *tptr,uint64_t moonWorldId)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->deorbit(tptr,moonWorldId);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();
}
void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
} catch ( ... ) {}
}
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
} catch ( ... ) {
return (ZT_PeerList *)0;
}
}
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
} catch ( ... ) {
return (ZT_VirtualNetworkConfig *)0;
}
}
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
} catch ( ... ) {
return (ZT_VirtualNetworkList *)0;
}
}
void ZT_Node_freeQueryResult(ZT_Node *node,void *qr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->freeQueryResult(qr);
} catch ( ... ) {}
}
int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addLocalInterfaceAddress(addr);
} catch ( ... ) {
return 0;
}
}
void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->clearLocalInterfaceAddresses();
} catch ( ... ) {}
}
int ZT_Node_sendUserMessage(ZT_Node *node,void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr,dest,typeId,data,len);
} catch ( ... ) {
return 0;
}
}
void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setNetconfMaster(networkControllerInstance);
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->setPhysicalPathConfiguration(pathNetwork,pathConfig);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_version(int *major,int *minor,int *revision)
{
if (major) *major = ZEROTIER_ONE_VERSION_MAJOR;
if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR;
if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION;
}
} // extern "C"
|